

Fremont-Madison Irrigation District

Automation and SCADA Project Phase 4

WaterSMART Small-Scale Efficiency Projects-July 2024
Funding Opportunity No. R24AS00059

Rexburg Irrigation Canal-Water Control Structure to be Automated

APPLICANT:
Fremont-Madison Irrigation District
350 North 6th West
PO BOX 15
Saint Anthony, Idaho 83445

PROJECT MANAGER:
Aaron Dalling
aaron.fmid@myidahomail.com
(208) 624-3381

Table of Contents

1. Executive Summary.....	1
Applicant Info.....	1
Project Summary	1
Schedule	1
2. Project Location.....	2
3. Technical Project Description.....	2
4. Evaluation Criteria.....	6
Evaluation Criterion A- Project Benefits	6
Evaluation Criterion B- Planning Efforts Supporting the Project.....	9
Evaluation Criterion C- Implementation and Results	10
Evaluation Criterion D- Nexus to Reclamation	12
Evaluation Criterion E- Presidential and Department of the Interior Priorities.....	13
5. Other Information	14
6. Environmental and Cultural Considerations.....	15
7. Official Resolution.....	16

Attachments:

Attachment A-Location Map
Attachment B-Project Map

Small-Scale Water Efficiency Projects FY 2024

Technical Proposal and Evaluation Criteria

Executive Summary

Applicant Info

Date: July 8, 2024

Applicant Name: Fremont-Madison Irrigation District-Category A Applicant

City, County, State: Saint Anthony, Fremont, Idaho

Project Manager:

Name: Aaron Dalling

Phone: 208-624-3381

Email: aaron.fmid@myidahomail.com

Project Funding Request: Small Scale Water Efficiency Projects- Total Cost \$200,267.00.

Fremont-Madison Irrigation District is requesting 50% funding from Reclamation or \$100,000.00.

Project Summary

Fremont-Madison Irrigation District (FMID) proposes to automate 6 water control structures and install remote operation and data collection equipment at each site. This project is in partnership with 4 canal companies that we deliver storage water too. They are Southeast Idaho Canal Company (SICC), North Fremont Canal Systems, Inc. (NFCSS), Rexburg Irrigation Canal Company (RICC) and the Silky Canal Company (SCC). This project will help manage water deliveries more efficiently for 52,761 acres of irrigated cropland, bolster partnerships, and promote conservation among water users within our service area. This project will be another concrete step towards implementing an alternative in the 2015 Henry's Fork Basin Study that was coordinated and completed with the help of several partners including the Bureau of Reclamation (Reclamation). In the study, canal automation was identified as one of the most economical means of conserving water in the Henry's Fork Watershed.

This will also result in better relationships with our partners. Each of these benefits is described in further detail below.

The proposed start date for the project will be October 2025 with a completion date of June of 2026.

This project is not located on a federal facility.

Project Location

Attachment A provides the geographic location on a map.

Table 1. Locations of Automation/Remote Operations Equipment

Location Name	Latitude	Longitude	County/State
NFCS Penstock Gate	44°4'64 "N	111°19'45.47 "W	Fremont/Idaho
NFCS Kirkham Gate	44°3'51 "N	111°21'19.19 "W	Fremont/Idaho
Silkey Canal Gate	44°0'25 "N	111°32'6.82 "W	Fremont/Idaho
SICC Structure 1	43°56'2.72 "N	111°40'5.56 "W	Fremont/Idaho
SICC Structure 2	43°56'2.29 "N	111°39'57.56 "W	Fremont/Idaho
Rexburg Irrigation	43°49'11.01 "N	111°47'43.59 "W	Madison/Idaho

Nearest Towns

These locations are near the towns of Ashton, St. Anthony and Rexburg Idaho.

Technical Project Description

Provide a comprehensive description of the technical aspects of your project, including the scope of work to be accomplished and the approach for the on-the-ground project. This description should provide detailed information about the project materials and equipment, including what is currently installed and a description of the upgrade being made. Include in your description the necessary site preparation, removal of materials, motorized and rotating equipment required for installation, site laydown and mobilization areas, and areas impacted by construction. This section provides an opportunity for the applicant to provide a clear description of the technical nature and installation process of the project and to address any aspect of the project that reviewers may need additional information to understand.

Please do not include your project schedule and milestones here; that information is requested in response to the Evaluation Criterion C—Implementation and Results. In addition, please avoid discussion of the benefits of the project, which are also requested in response to evaluation criteria. This section is solely intended to provide an understanding of the technical aspects of the project.

Please note, if the work for which you are requesting funding is a phase of a larger project, please only describe the work that is reflected in the budget and exclude description of other activities or components of the overall project.

FMID proposes to retrofit 6 existing structures with automation, remote control and data collection equipment. Two of these structures will need to be rebuilt to facilitate the installation of the automation equipment.

The first of the structures we propose to automate and install remote control and data acquisition equipment is on the main splitter structure on the RICC. See figure 1 below.

Figure 1-RICC Gates to be Retrofitted with Automation

This structure is a primary control for RICC. It requires adjustment daily, and often times has to be adjusted multiple times a day in an effort to fine tune flows in each branch of the canal.

We propose to retrofit 2 control structures on the Marysville Canal within the NFCS delivery system with automation, remote control and data acquisition equipment.

The Kirkham structure is a primary water control structure within their delivery system. This structure is the intake for 4 pressurized pipelines and the earthen canal that deliver's water to a holding pond for the Turkey Tract's pressurized pipeline. It is this control gate to the earthen canal that we propose to retrofit with the automation equipment. (See figure 2 below)

Figure 2-Kirkham Structure, Gate to be Retrofitted with Automation

The second gate to be retrofitted with automation equipment within their system is the main penstock gate. (See figure 3)

Figure 3-Marysville Canal Penstock-Gate to be Automated

This gate is manually adjusted several times per week and the exact needed diversion rate is rarely obtained with the existing equipment. The proposed equipment would include automation and measurement equipment which would allow for precise management and the availability of real time flow data.

On the Middle Branch of the Fall River Canal, which is a part of SICC's delivery system, we propose to retrofit one existing check structure (Structure 1 in Figure 4) with an automated overshot gate in place of the existing structure which is currently operated with boards. We also proposed that an existing screw gate be replaced with an automated overshot gate (Structure 2 in Figure 4).

Figure 4-SICC-Middle Branch Fall River Canal Automated Overshot Gates.

Figure 5-Structure 1, SICC-Fall River Canal Check Structure to be Retrofitted with Automation

Currently to deliver water to the lower section of the Middle Branch of the Fall River Canal there are two sources to meet the full demand. The two sources are labeled in figure 4. The first source is water wrapping around and coming back from the west. The second source is water being delivered more directly through an existing screw gate. However, the screw gate is not large enough to fill the entire need of the lower section of canal. Under the proposal we would remove the screw gate and replace it with a concrete structure and an automated overshot gate large enough that water would no longer need to wrap around and come back from the west.

The main channel running due west would continue to deliver water to the Farmers Friend Canal approximately $\frac{1}{2}$ mile to the west. This is an important delivery point for the system. Measuring the flow at this spot and having it available in real time would improve deliveries and reduce conflict among water users.

The final gate that we propose retrofitting with automation equipment is the SCC Headgate. (See figure 6)

Figure 6-Existing SCC Headgate to be Replaced and Automated

To facilitate the automation equipment a new steel gate will need to be built to replace the existing wooden gate. The concrete will remain in place. This gate is incredibly inefficient. The gate must be wedged up with sticks to allow water to flow into the canal from the Fall River. Target flows are almost never obtained. The current operation is about as inefficient as it can possibly be. A new steel gate with automation equipment will be a significant improvement for water management on the SCC.

Technical Proposal: Evaluation Criteria

The evaluation criteria portion should be addressed in the technical proposal section of the application. Applications should thoroughly address each criterion and any sub-criterion in the order presented below. **Applications will be evaluated against the evaluation criteria listed below.**

Evaluation Criterion A. Project Benefits (35 points)

Benefits to the Category A Applicant's Water Delivery System: Describe the expected benefits to the Category A applicant's water delivery system. Address the following:

Clearly explain the anticipated water management benefits to the Category A applicant's water supply delivery system and water customers. Consider:

- **Will the project result in more efficient management of the water supply?**

Yes, on SICC's delivery system, structure 1 is the primary control to adjust how much water continues down the Middle Branch of the Fall River Canal to the South and how much water is delivered to the Farmers Friend Canal to the west.

Throughout the season significant flow changes are needed at this check structure resulting in the need to adjust the number of boards placed in the structure.

Fine-tuned water deliveries are always difficult when the control mechanism is boards being placed in a structure. It is nearly impossible to get deliveries exactly where needed to provide maximum benefit to shareholders.

Due to the difficulty of modifying the number of boards in the structure, flow changes are often delayed. Minor flow changes that could result in water savings are often ignored because of the difficulty of making the changes and the potential inaccuracy of such changes.

Once the automated overshot gates are installed; we can set the desired water elevation in the canal and the gates will automatically adjust to maintain the water at that elevation.

The SCC headgate is about as inefficient as a water control structure can be. It currently has to be propped open with sticks and flow targets are essentially never met. Leaving the canal with either too much water or not enough.

Each of the other gates to receive automation, remote-control and data acquisition equipment will significantly increase the efficiency at which we operate.

Based on past experience with installing automation we believe each of these projects will facilitate water savings of 3 to 5-acre feet per day during the peak of the irrigation season from May 15 to September 30. Considering this, we estimate this project will reduce overall irrigation diversions by at least 2,000-acre feet per year.

Where any conserved water as a result of the project will go and how it will be used?

Conserved water will remain in Island Park Reservoir and can be stored until needed the following year. If the conserved water is not needed to help fill the reservoir in the subsequent year it can be released during the winter and stored downstream in American Falls Reservoir. This increased release during the winter is extremely beneficial for trout survival in the reach just below the reservoir.

Explain the significance of the anticipated water management benefits for the Category A applicant's water delivery system and customers. Consider:

- Are customers not currently getting their full water right at certain times of year?

At certain points in every irrigation season the flows into each of these branches of the canal systems are not fine-tuned enough to meet customer demand. With the proposal we will meet these demands a much higher percentage of the time.

- Does this project have the potential to prevent lawsuits or water calls?

Yes, by making better water deliveries it will reduce potential lawsuits and general contention.

- Are customer water restrictions currently required?

Some of these structures are located near the end of our delivery systems. During peak demand restrictions must be placed in order to push water to the end of the system. This makes fine-tuned adjustments even more beneficial.

- Other significant concerns that support the need for the project.

Winter trout survival in the reach directly below Island Park Dam is critically important to the local fly-fishing industry. This project will help us keep more water in the reservoir during the irrigation season which can then be released during the winter for the benefit of trout.

Broader Benefits: Describe the broader benefits that are expected to occur as a result of the project.

Consider:

Will the project improve broader water supply reliability at sub-basin or basin scale?

Yes, by managing our water high in the Upper Snake watershed more efficiently it benefits the entire Upper Snake Reservoir System. Water can be held in Island Park until it is needed downstream. This reduces the risk of spilling water out of the system at Milner Dam, while there is still space in upstream reservoirs.

- Will the proposed project increase collaboration and information sharing among water managers in the region? Please explain.

Yes, this project will increase collaboration and available information to each of the canals and FMID.

- Is the project in an area that is experiencing, or recently experienced, drought or water scarcity? Will the project help address drought conditions at the sub-basin or basin scale? Please explain.

In our area we are seeing the impact of climate change on our water supply. We are highly dependent on natural flow in our area. On average about 90% of our water comes from natural flow, while only about 10% comes from water stored in the reservoirs. We are highly dependent on water being stored as snow at high elevations and coming down the river system when we need it in mid and late summer. As our climate becomes warmer, that snow is melting off earlier, leaving us with diminished water supplies during the peak of our irrigation season in July and August. We do not have the reservoir space to store the water when it comes off early. This project will reduce our overall water demand, making us more drought resilient.

- Will the project benefit species (e.g., federally threatened or endangered, a federally recognized candidate species, a state listed species, or a species of particular recreational, or economic importance)? Please explain.

This project will result in more constant releases from the reservoir and thereby improve the conditions for fish and wildlife including the Yellowstone Cutthroat Trout. The Henrys Fork River is a world-renowned fly-fishing destination. The annual local economic impact of the fishing industry is 50 million

- Will the proposed project positively impacts/benefit various sectors and economies within the applicable geographic area (e.g., impacts to agriculture, environment, recreation, and tourism)? Please explain.

This project will increase the water reliability for an irrigated agriculture economy that averages over 300 million dollars in crop sales in Fremont and Madison Counties each year. This project will benefit water deliveries to over 50,000 acres of productive farmland.

In addition to providing the water for our local agriculture economy, the Henry's Fork is a world-famous fly-fishing destination which contributes 50 million dollars to our local economy. This is in addition to 14 million in property tax revenue from second homes owned by anglers in Fremont County.

This project will help us maintain a more constant level in the reservoir and consistent releases into the river. This will improve recreation, benefiting recreation on the reservoirs themselves including, boating, fishing, camping, etc. also benefiting the local economy.

Tourism will benefit as a result of the environmental and recreational improvements. Full reservoirs are also aesthetically pleasing which will benefit tourism and its economic impacts.

- Will the project complement work being done in coordination with NRCS in the area (e.g., the area with a direct connection to the districts water supply)? Please explain.

This project is not directly related to any one NRCS on-farm projects but will generally benefit the water supply for many NRCS on farm projects.

Evaluation Criterion B. Planning Efforts Supporting the Project (25 points)

Plan Description and Objectives: Is your project supported by a specific planning document or effort? If so, describe the existing plan. When was the plan developed? What is the purpose and objective of the plan?

Automation and flow measurement in our area is specifically identified in several planning efforts including the Henry's Fork Basin Study, Fremont-Madison Irrigation District Conservation Plan and in the Henry's Fork Drought Management Plan. Each of these plans was specifically developed to manage water more efficiently for all stakeholders.

Plan Development: Who developed the planning effort? What is the geographic scope of the plan? If the planning effort was not developed by the Category A applicant, describe the Category A applicant's involvement in developing the planning effort.

Henry's Fork Basin Study-2015

Canal automation was identified as one of the most economical alternatives for conserving water on a per acre foot basis within Fremont-Madison in the 2015 Henry's Fork Basin Study. This plan was primarily developed by the Henry's Fork Watershed Council which is co-facilitated by FMID and the Henry's Fork Foundation.

Fremont-Madison Irrigation District Water Conservation Plan-2009

One of the specific recommendations of the plan was to increase water use data. This project helps us accomplish that recommendation.

Henry's Fork Drought Management Plan

In 2018 the committee revised the Drought Management Plan and included canal automation as one of the most effective means of conserving water in the Henry's Fork Watershed, which will improve the management of the reservoirs benefiting the fishery and agriculture.

The Drought Management Planning Committee has also developed water management and availability models that have significantly improved management of Island Park Reservoir and increased carryover by roughly 20% in each of the last 6 years. However, further gains are limited by the current irrigation infrastructure and the time and resources necessary to operate it. Installing this automation equipment will provide a means to conserve additional water in the reservoirs for all to benefit from.

Support for the Project: Describe to what extent the proposed project is supported by the identified plan. Consider:

- Is the project identified specifically by name and location in the planning effort?

No, however automation/SCADA within our systems is called out.

- Is this type of project identified in the planning effort?

Yes, automation /SCADA is identified as one of the most economic means of conserving water in these planning efforts.

- Explain whether the proposed project implement a goal, objective, or address a need or problem identified in the existing planning effort?

The primary goal of each of the planning effects was to more precisely manage water in the Henry's Fork watershed. This project helps us do that.

- Explain how the proposed project has been determined as a priority in the existing planning effort as opposed to other potential projects/measures.

We have discussed these projects at length in several board meetings and in our annual meeting with our shareholders and identified this as a priority need. These projects are all very important to improve our water management and irrigation deliveries.

E.1.1. Evaluation Criterion C. Implementation and Results (20 points)

- Describe the implementation plan for the proposed project. Please include an estimated project schedule that shows the stages and duration of the proposed work, including major tasks, milestones, and dates.

This is a straightforward, simple project. If all goes as planned, we will be awarded this grant, complete the contracting and environmental work during the winter of 2024-2025. Construction would then be commenced after the irrigation season of 2025.

Table 2. Project Timeline

Crosscut Check Structure Automation Project	2024				2025											
	Sept	Oct	Nov	Dec	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
Activity																
Award of WaterSMART Grant																
Develop and sign WaterSMART Contract																
Environmental Evaluation																
Installation of Automation Equipment																

- Proposals with a budget and budget narrative that provide a reasonable explanation of project costs will be prioritized under this criterion.

Budget Narrative

Personnel

FMID has staff in place that will manage this project. FMID will not claim cost associated with personnel as a part of this grant application. We are willing to dedicate staff at our own expense to get the project done if Reclamation can help with the cost of the equipment and construction.

Construction Materials

In budget table 1 below it details the construction materials needed to complete the project. Historically we have installed Campbell equipment, which is common in our area. This makes it easier to share information with our partners. There are several suppliers of Campbell equipment. If

the project is funded through WaterSMART, we will find the most cost-effective supplier to purchase from.

Budget Table 1. Construction Materials

Item	Quantity	Unit Cost	Total Cost
CR-IO00X	6	\$2,540.00	\$15,240
Modem	5	\$1,210.00	\$6,050
Gear Box	1	\$2,775.00	\$2,775
Gear Box	1	\$743.00	\$743
RF-450 Radio	1	\$1,060.00	\$1,060
24VDC-1HP	1	\$980.00	\$980
Cell Antenna	6	\$145.00	\$870
MOA-2	7	\$1,520.00	\$10,640
Sol-100	6	\$200.00	\$1,200
Sol-Mounts	6	\$250.00	\$1,500
Sol-Regulators	6	\$300.00	\$1,800
3 Iseries	10	\$244.00	\$2,440
12-Rly-250	6	\$164.00	\$984
Gate Position Sensors	3	\$945.00	\$2,835
Transducers	6	\$825.00	\$4,950
Inclinometer	4	\$525.00	\$2,100
actuators	4	\$2,000.00	\$8,000
misc.	1	\$4,500.00	\$4,500
Manual off auto control	3	\$795.00	\$2,385
Staff Gauge	2	\$95.00	\$190
enclosure for electronic equip	6	\$1,200.00	\$7,200
Concrete	30	\$180.00	\$5,400
metal stand	6	\$300.00	\$1,800
Subtotal			\$85,642

Contractual Services

We have had multiple companies bid on this project specific to the automation equipment. Metcom was the lowest bidder. Metcom charges \$85/hr while many of the other companies charge double that.

We have one bid for the concrete and one bid to build the gates to establish a project cost. If this project is funded will put this out for a competitive bid process and select the lowest qualified bidder.

Budget Table 2. Contractor Construction Services

Contractor Name	Description of Services	Total Cost
TBD	Installation of automation equipment	\$21,250
TBD	Programming of automation equipment	\$9,400
TBD	Metal Work (welding of mounting stands etc)	\$8,400
TBD	Concrete Work for structure 2 on the Fall River Canal	\$7,200
TBD	Metal Walkway for Structure 2	\$8,500

TBD	Build and Install Metal Overshot Gates	\$53,000
TBD	Build and Install Silkey Canal Gate	\$6,875
	Subtotal	\$114,625

Budget Narrative Summary

A summary of the total cost of the project and proposed funding source is below in budget table 3.

Budget Table 3. Summary of Federal and Non-Federal Funding Sources

Funding Source	Funding	Percentage
FMID	\$100,267.00	50%
WaterSMART	\$100,000.00	50%
Totals	\$200,267.00	100%

- Describe any permits and agency approvals that will be required along with the process and timeframe for obtaining such permits or approvals.

No Permits are required for this project.

- Identify and describe any engineering or design work performed specifically in support of the proposed project. What level of engineering design is the project currently? If additional design is required, describe the planned process and timeline for completing the design.

This project does not require any engineering.

- Does the applicant have access to the land or water source where the project is located? Has the applicant obtained any easements that are required for the project? If the applicant does not yet have permission to access the project location, describe the process and timeframe for obtaining such permission.

Yes, we have access to the land.

- Identify whether the applicant has contacted the local Reclamation office to discuss the potential environmental and cultural resource compliance requirements for the project and the associated costs. Has a line item been included in the budget for costs associated with compliance? If a contractor will need to complete some of the compliance activities, separate line items should be included in the budget for Reclamation's costs and the contractor's costs.

This project will be simple in this regard. We are willing to cover any cost associated with cultural and environmental compliance if needed.

E.1.2. Evaluation Criterion D. Nexus to Reclamation (5 Points)

Is the proposed project connected to a Reclamation project or activity? If so, how? Please consider the following:

- Does the applicant have a water service, repayment, or operations and maintenance (O&M) contract with Reclamation?

Yes, FMID who is contracted with Reclamation for the storage water in Island Park and Grassy Lake Reservoirs. FMID is also contracted with Reclamation for the operations and maintenance of Island Park and Grassy Lake Reservoirs.

- If the applicant is not a Reclamation contractor, does the applicant receive Reclamation water through a Reclamation contractor or by any other contractual means?

FMID is a Reclamation contractor.

- Will the proposed work benefit a Reclamation Project area or activity?

Yes, the reservoirs that will benefit from this project are a Reclamation project.

E.1.3. Evaluation Criteria E. Presidential and Department of the Interior Priorities (15 points)

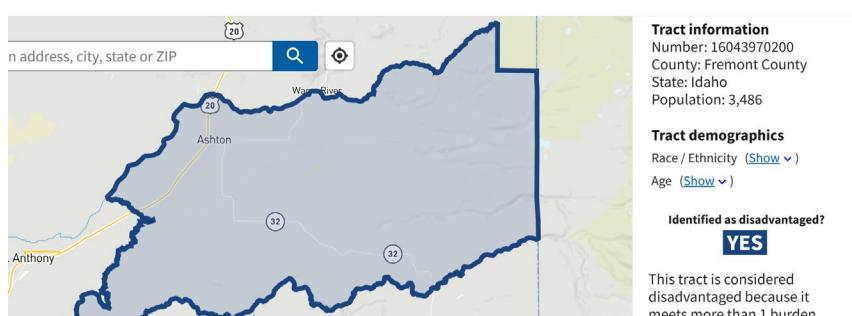
E.1.3.1. Sub-criterion No. E1. Climate Change

Combating the Climate Crisis: E.O. 14008: *Tackling the Climate Crisis at Home and Abroad*, focuses on increasing resilience to climate change and supporting climate- resilient development. For additional information on the impacts of climate change throughout the western United States, see: www.usbr.gov/climate/secure/docs/2021secure/2021SECUREReport.pdf. Please describe how the project will address climate change, including the following:

- Please provide specific details and examples on how the project will address the impacts of climate change and help combat the climate crisis.

Climate change results in more extreme storms, which can result in quick and significant irrigation diversion demand. This equipment will allow us to respond quickly, with remote control to prevent potential flooding on the canal.

We also believe this project will reduce vehicle travel by roughly 50 miles per day during the peak of the irrigation season from roughly May 15 to September 30.


- Does this proposed project strengthen water supply sustainability to increase resilience to climate change? Does the proposed project contribute to climate change resiliency in other ways not described above?

Absolutely, this project will facilitate our ability to make timely flow changes in each of these canal systems. We will use less water making it available for future years or for other purposes.

E.1.3.2. Sub-criterion No. E2. Disadvantaged or Underserved Communities

- Please use the White House Council on Environmental Quality's interactive Climate and Economic Justice Screening Tool, available online at [Explore the map – Climate & Economic Justice Screening Tool \(https://screeningtool.geoplatform.gov\)](https://screeningtool.geoplatform.gov) to identify any disadvantaged communities that will benefit from your project.

Some of the area falls within a disadvantaged community as identified on the screening tool. See image below.

- If applicable, describe how the project benefits those disadvantaged or underserved communities identified using the tool. For example, does the project increase reliability of water supplies, improve water quality, provide economic growth opportunities, improve or expand public access to natural areas or recreation, or provide other benefits in a disadvantaged or underserved community?

This project will improve water reliability. Agriculture is the economic backbone of this area. In years of the water shortage, less crops are produced, resulting in fewer jobs and support for the local economy.

E.1.3.3. Sub-criterion No. E3. Tribal Benefits

- Does the proposed project directly serve and/or benefit a Tribe? Will the project improve water management for a Tribe?

The project does not directly impact water management for a Tribe.

- Does the proposed project support Tribal resilience to climate change and drought impacts or provide other Tribal benefits such as improved public health and safety by addressing water quality, new water supplies, or economic growth opportunities?

This project has general benefits to water supply in the Upper Snake River Reservoir System. More water can be held higher in the reservoir system preventing unnecessary spill at Milner Dam.

- Does the proposed project support Reclamation's Tribal trust responsibilities or a Reclamation activity with a Tribe?

This project could improve water available under the Snake River Water Rights Agreement with the Nez Perce Tribe for flow augmentation.

Section H. Other Information

- Will the proposed project impact the surrounding environment (e.g., soil [dust], air, water [quality and quantity], animal habitat)? Please briefly describe all earth-disturbing work and any work that will affect the air, water, or animal habitat in the project area. Please also explain the impacts of such work on the surrounding environment and any steps that could be taken to minimize the impacts.

Earth Work will be extremely minimal. This will all be done on land that has been previously disturbed during the building of the canals.

- Are you aware of any species listed or proposed to be listed as a Federal threatened or endangered species, or designated critical habitat in the project area? If so, would they be affected by any activities associated with the proposed project?

No, we are not aware of any species or critical habitat in the project area.

This project will have no negative impact on any species. This project will result in more constant flows in the rivers. It will also hold additional water in Island Park reservoir during the irrigation season. This will result in additional water that can be released during the winter when it is critical for trout survival.

- Are there wetlands or other surface waters inside the project boundaries that potentially fall under CWA jurisdiction as "Waters of the United States"? If so, please describe and estimate any impacts the

proposed project may have.

No, there is no impact to wetlands.

- When was the water delivery system constructed?

These canals were constructed in the 1890's and early 1900's

- Will the proposed project result in any modification of or effects to, individual features of an irrigation system (e.g., headgates, canals, or flumes)? If so, state when those features were constructed and describe the nature and timing of any extensive alterations or modifications to those features completed previously.

Yes, these structures were installed and built between 10 and 40 years ago.

- Are any buildings, structures, or features in the irrigation district listed or eligible for listing on the National Register of Historic Places? *A cultural resources specialist at your local Reclamation office or the State Historic Preservation Office can assist in answering this question.*

No

H.1. Environmental and Cultural Resource Considerations

- Are there any known archeological sites in the proposed project area?

No

- Will the proposed project have a disproportionately high and adverse effect on low income or minority populations?

No, any impact on these types of populations would be positive.

- Will the proposed project limit access to, and ceremonial use of, Indian sacred sites or result in other impacts on tribal lands?

No

- Will the proposed project contribute to the introduction, continued existence, or spread of noxious weeds or non-native invasive species known to occur in the area?

No

Fremont-Madison Irrigation District

Official Resolution 2024-02

In the matter of the proposed WaterSMART application to United States Bureau of Reclamation (Reclamation) for automation/remote operations for Fremont-Madison Irrigation District.

WHEREAS, Reclamation's Small-Scale Water Efficiency Grants provide funding to non-federal entities to implement actions to increase water supply reliability through investments in existing infrastructure; and

WHEREAS, Reclamation requires that Small-Scale Water Efficiency Grant applicant adopt a resolution verifying (1) the identity of the official with legal authority to enter into agreement, (2) the board of directors, governing body, or appropriate official who has reviewed and supports the application submitted, (3) the capability of the applicant to provide the amount of funding and/or in-kind contributions specified in the funding plan, and (4) that the applicant will work with Reclamation to meet established deadlines for entering into a cooperative agreement; and

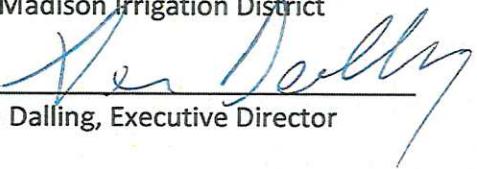
WHEREAS, FMID desires to apply for a Small-Scale Water Efficiency Grant to assist the District with installing automation equipment on 6 water control structures within the District, a project designed to improve water use efficiency; and

WHEREAS, The FMID Board of Directors have reviewed the WaterSmart Grant proposal and supports the grant application; and

NOW, THEREFOR, BE IT RESOLVED that FMID authorizes application to Reclamation for a WaterSMART grant and authorizes Aaron Dalling, Executive Director to enter into an agreement with Reclamation for the WaterSMART grant; and

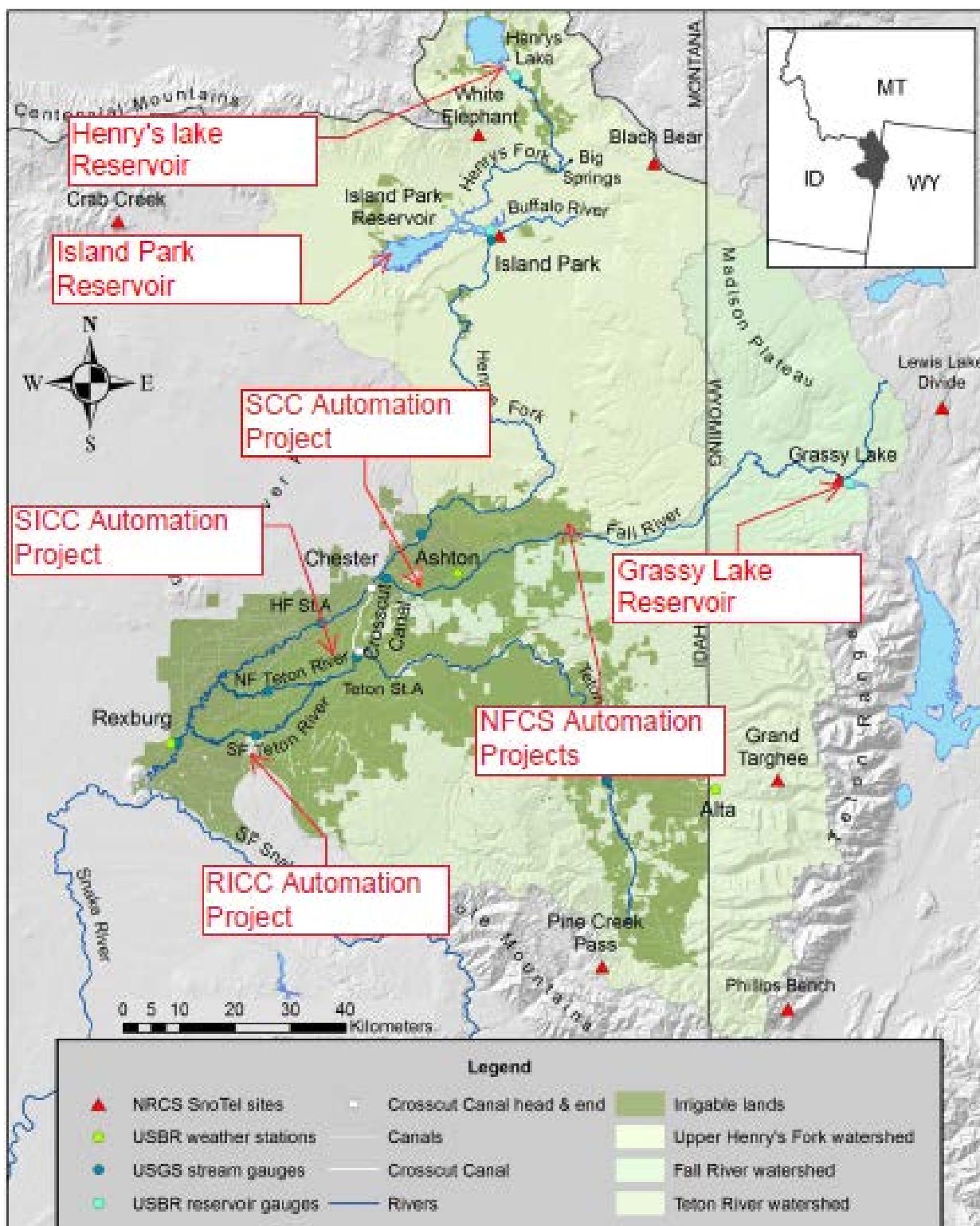
FURTHER IT BE RESOLVED, that FMID recognizes that Aaron Dalling, Executive Director will represent FMID as its legal entity in the cooperative agreement; and

FURTHER IT BE RESOLVED, that FMID agrees to the WaterSmart funds and will work cooperative with Reclamation to meet established deadlines for entering into a cooperative agreement; and


FURTHER IT BE RESOLVED, that FMID shall provide or ensure the non-federal portion of the project costs.

Dated this 3rd day of July 2024

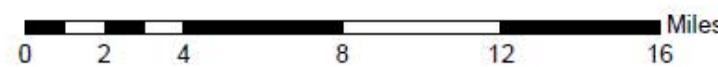
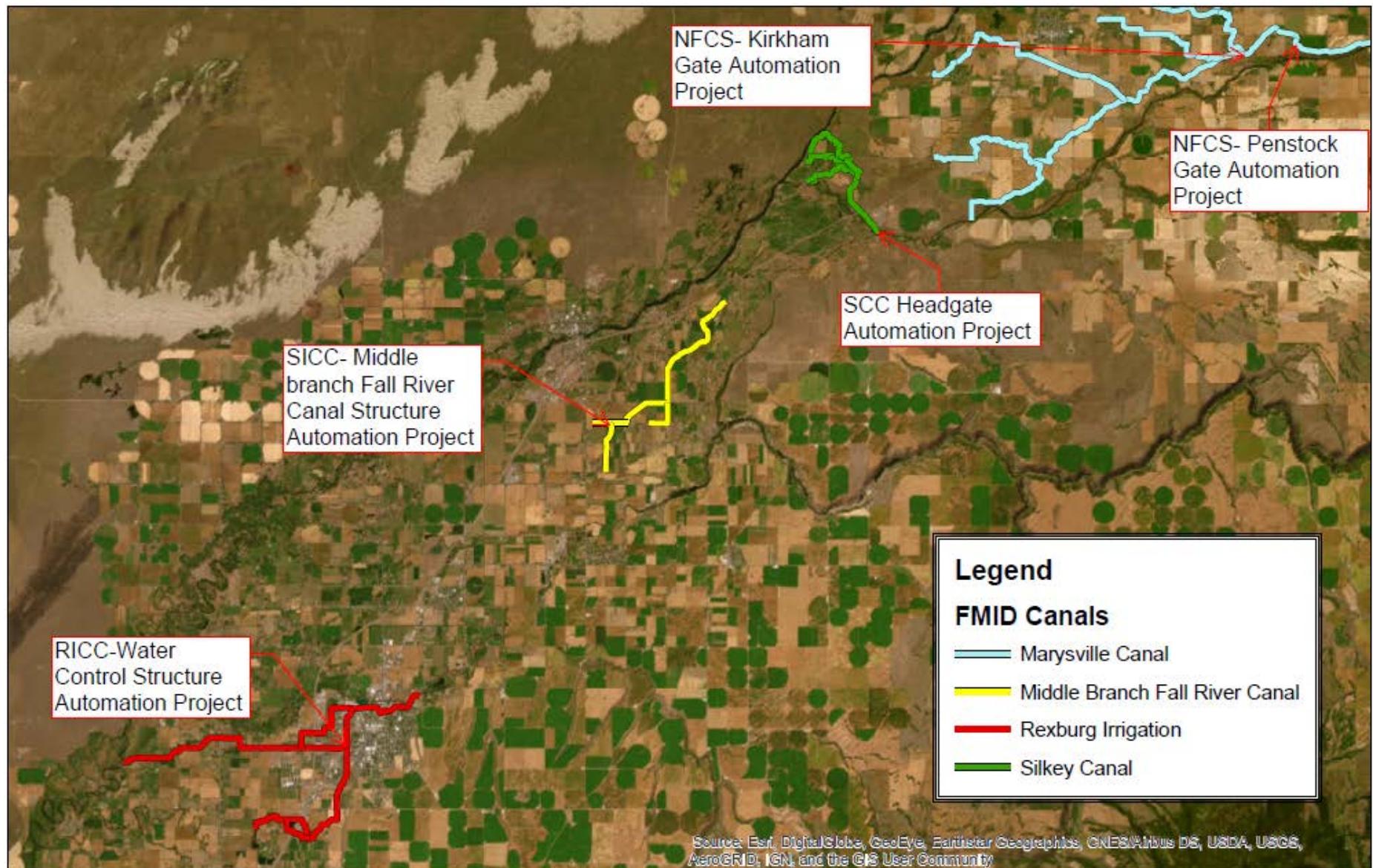
Fremont-Madison Irrigation District



By: Jeff Raybould, Chairman

Fremont-Madison Irrigation District

By: Aaron Dalling, Executive Director



Attachment A-Location Map

Henry's Fork Reservoirs, Canal Diversions and Irrigated Acres

Attachment B

FMID Canal Automation Project

