Biological Boundaries and Conservation of the Kanab Ambersnail

- Mitochondrial DNA sequence
- •Nuclear DNA sequence (gene and SNP)
- Anatomical analyses

Melanie Culver, Hans-Werner Herrmann, Anna Carlson, Mark Miller, Barry Roth, Jeff Sorenson

Molecular Taxonomy: Kanab ambersnail

- Genetic and anatomical variation in Kanab ambersnail USGS (GCMRC)
 - Hans-Werner Herrmann, Postdoc (UA)
 - Anna Carlson, Postdoc (UA)
 - Collaborators: Mark Miller (USU), Barry Roth
 - Sampling: Jeff Sorenson (AGFD)
 - 1. Resolve Kanab ambersnail taxonomy in *Oxyloma AZ/* UT populations (AZ, UT) and Canada individuals
 - 2. Explain prior discordance of morphological and genetic results

Background

- Oxyloma genus, terrestrial snail
 - >12 species in North America
 - Also occurs in Europe and Africa

- Oxyloma haydeni occurs in western US and Canada
 - Taxa not well defined
 - Morphology and anatomy have limitations
- Kanab Ambersnail, Oxyloma haydeni kanabense
 - Type specimen in Utah, occurs into Canada
 - ESA listed as endangered subspecies
- Family SUCCINEIDAE, Beck, 1837
 - Shells offer little indication if genus or species identity
 - Genera are identified by anatomical traits (reproductive)
 - Species-level resolution poorly understood

Oxyloma haydeni haydeni (Niobrara ambersnail)

Oxyloma haydeni kanabense (Kanab ambersnail)

- Distribution pattern are disjunct for both subspecies
- Sympatric distribution in Arizona and Alberta

- ☆ Niobrara
- * Kanab

Utah/Arizona,
Distribution
NOT sympatric
btwn subspecies

Previous Molecular Studies

(Miller et al.)

- AFLP
 - 3 Lakes, Indian Garden
 - High diversity
 - Vasey's, -9 mile
 - Low diversity

- All equally different taxa?
- What taxonomic level?

More research is needed!

Current Study

- Molecular Methods
 - mtDNA sequencing CoxI, Cytb (Mark Miller, USU)
 - Nuclear DNA SNPs, genes, STR (Culver, Herrmann)
- Morphological and Anatomical Methods
 - (Barry Roth)
 - Shell characteristics
 - Reproductive characteristics
- Management Implications
 - River hydro dynamics?
 - What taxa occur in the Grand Canyon?

Sampling

(Jeff Sorenson and Dan Cox, AGFD)

- AZ and Utah sampled
- 11 sampling locations
- 15-25 individs./pop.
- KAS type locality;
 Greens
- "Named" KAS at 4 locations

Molecular Markers Overview

- Mitochondrial DNA (extra- nuclear)
 - Medium to high resolution marker (one single marker)
 - Used to resolve species, subspecies, populations, gene flow
 - Genes and non-coding d-loop (control region)

- Autosomal single copy DNA (nuclear)
 - Low resolution markers (many independent)
 - Used to resolve species or higher order
 - Genes, non-coding (DNA sequence or SNP)

- Autosomal microsatellite STR DNA (nuclear)
 - High resolution markers (many independent)
 - Highly polymorphic (repetitive) motifs [ATATA]....[GCGCG]
 - Used for individual ID, relatedness, gene flow, populations subdivision, subspecies-level resolution
 - Non coding (Fragment length polymorphism)

Nuclear DNA Marker Development

- Nuclear genes
 - Tested 6 genes from mollusc literature
 - 2 produced PCR product
- SNP development in species with no genome information
 - Genomic library
 - Sequenced 150 random clones (65kb), design primers
 - Most primers did not amplify across populations (species/subspecies)
 - Those that did amplify (conserved region), most showed no variability
 - 2 regions found with polymorphic sites
 - 356 25 variable (15 parsimony informative) sites
 - 458 36 variable (32 parsimony informative) sites, and 5 indels
- STR development
 - Genomic library enriched for simple tandem repeat elements
 - Sequenced 100 random clones, design primers
 - Most primers did not amplify across populations
 - 1 region, KS6511, amplified with 23 polymorphic alleles

DNA Methods Summary

- Mitochondrial DNA
 - DNA sequence for Cox1 (366 bp) and CytB (510 bp)
- Nuclear Genes
 - 2 polymorphic genes
 - S7 (486 bp)
 - ITS (625 bp)
- Nuclear SNPs
 - 2 polymorphic regions out of 150 clones
 - 356 25 variable sites
 - 458 36 variable sites, and 5 indels
- Nuclear STR
 - 1 polymorphic regions out of 100 clones
 - KS6511 23 polymorphic alleles.

Results - Oxyloma ingroup

Outgroups of Catinella, Succinea And Neosuccinea

Mitochondrial DNA phylogeny CoxI (366bp) & Cytb (510bp)

- KAS not distinct taxa
- One Vasey's indiv. has LF haplotype in Cytb gene
 - Short distance dispersal?
- Shallow clades
 - Bottlenecks?
 - Genetic Drift?
 - Gene flow?
- Greens individuals with very long branch length

Nuclear DNA S7 gene phylogeny S7(486bp)

- •KAS not distinct taxa
- "Mixed lineages" many lineages in most geographic locations

Nuclear DNA gene phylogeny ITS (625bp)

- •KAS not distinct taxa
- "Mixed lineages" many lineages in most geographic locations

Nuclear DNA clone phylogeny 356(199bp)

• KAS not distinct

Mixed lineages

Nuclear DNA clone phylogeny 458(528bp)

• KAS not distinct

Mixed lineages

STR Alleles in Oxyloma

-Canada has full range of alleles
-Arizona and Utah populations
mirror alleles found in Canada

In phylogeny, the Greens outliers clustered with *Oxyloma* samples from Canada

AFLP Bayesian STRUCTURE analysis supplement for STR data

K = 9 genetic clusters (Pass Crk and Indian gardens are not distinguishable)

Morphology and Anatomy

- Morphology
 - Used mantle digital images (more reliable method than measurements from the small and fragile shells themselves)
 - Estimated extent and pattern of black pigment an apparently significant character and possibly a useful field mark
 - Devised set of standard measurements to be taken from shell images
 - Large number of shell characters examined
- Anatomy
 - Used reproductive characters less susceptible to the effects of age, preservation, and individual variation
 - Large number of anatomical characters examined
- No significant differences among populations

PCA for *Oxyloma* samples for second and third components

Conclusions

- Extensive gene flow observed among *Oxyloma* populations in AZ and UT
- One taxonomic group (species-level) indicated
- Evidence for short and long distance dispersal
- How to explain dispersal?
 - Short distance may be river flow mediated (Lee's Vasey's)
 - Long distance may be bird transport (highly divergent lineages found in same geographic location)
- Unique dispersal strategy
 - Oxyloma are hermaphrodites
 - Oxyloma are capable of self fertilization
 - One immigrant can found a population
 - Genetic bottlenecks (and drift) are probably a common occurence

Additional support - 458 Network

- 3 Greens "outliers"
 - clustered withCanada

- 2 4 "hubs"
 - Where more lineage mixing occurred

Conservation Implications

- Populations should continue to be monitored for stability/decline in numbers
- Important to protect habitat to allow dynamic process of colonizations to continue
- Managed as one species group

— Metapop. with historical extinctions/ recolonizations?

– Ongoing colonizations?

Implications for ESA

- Genetics Policy states:
 - Genetic differences must be addressed during the listing process to determine the taxa being listed
 - No further revision of taxa is allowable, due to genetic data
- Under this policy of no revisions only delisting or relisting as different taxa is allowable.

Questions?

Museum samples from Canada

- Oxyloma haydeni (long distance dispersal)
- Oxyloma retusa (outgroup)
- Oxyloma nuttalina (outgroup)

Mitochondrial DNA, all Canada samples added to current samples

- Supports theory of bird transport
 - Canada *haydeni*
 - Greens
- Outgroup species are ingroups
 - Oxyloma retusa
 - Greens, Escalante
 - Oxyloma nuttalina
 - Greens, 3 Lakes

