Mary Orton Company LLC

4701 East Valley View Drive Phoenix, AZ 85044-5752

602.426-9866 voice 602.426-9867 facsimile 602.432-2469 cellular

mary@maryorton.com www.maryorton.com

Memo

То:	Members of the GCDAMP Technical Work Group
From:	Mary Orton
CC:	Alternates and interested persons
Date:	April 30, 2003
Re:	Attached recommendations from the Ad Hoc Committee on What's In and Out of the Strategic Plan (AHCIO) for your consideration at your next TWG meeting

Attached please find a document that should look familiar to you: the Final Draft Information Needs. The following changes have been made since the last time you saw it:

- All the changes to the Information Needs that were approved by AMWG on January 28, 2003, have been incorporated. These were the deletion of the INs under MO 12.2, the deletion of RIN 6.5.4, and adding the narrative found under MO 12.2. These changes are not redlined. Note that the AMWG specifically did not approve the INs at that meeting. They wanted to wait until the work of the Ad Hoc Committee on What's In and Out of the Strategic Plan (AHCIO) was complete before considering approval of the INs.
- 2. Also incorporated in the attached document are the results of the work of the AHCIO, as directed by the AMWG at its January 2003 meeting. These proposed changes are redlined, and include a recommended new principle (on the page immediately following this memo), several recommended changes in wording of INs, and recommended categories for all but two INs. The categories, as approved by AMWG in January, are explained on pp. 3-4.

Per direction of the AMWG, these recommendations are coming to you for you to consider for a recommendation to the AMWG. The TWG and the Ad Hoc Committee

ACHIO memo to TWG

i

may have two separate recommendations for the AMWG, or you may be able to agree to common language at your meeting in May.

Please note that there is no category specified for RINs 2.6.1 or 2.6.2. The committee made much progress but was unable to agree whether these Information Needs should be classified as Category A or Category B. The reasons to support each choice are below.

<u>M.O. 2.6 Maintain (flannelmouth sucker, bluehead sucker and speckled dace)</u> abundance and distribution in the Colorado River ecosystem below Glen Canyon Dam for viable populations.

RIN 2.6.1 What is a viable population?

<u>Reasons to support Category A for RIN 2.6.1 (by Pam Hyde):</u> The AMP has an interest in keeping native fish species in Grand Canyon off the endangered species list. And in fact, we wish to do more than that – we wish to maintain viable populations of these native species.

Since these species are not listed, it is not the exclusive responsibility and jurisdiction of the U.S. Fish and Wildlife Service to recover these species, and, in the process, set recovery goals based on a determination of what constitutes a viable population. Other agencies can do their own work and set their own levels for what they think constitutes viable populations of these native species. Arizona Game and Fish Department and the National Park Service each have management responsibility for wildlife within Grand Canyon National Park, so they would be the most logical agencies to make a determination of viable populations. However, neither agency has yet done so, and both are members of the AMWG, so by default it would be appropriate for GCMRC to do the work to determine what a viable population of each of these native fish species would be. so that we can monitor and manage the fish to maintain those viable populations. If AGFD and/or NPS choose to determine viable populations on their own, presumably the AMP would consider those determinations carefully in developing or reviewing its own determinations, just as we have indicated in the Strategic Plan that we will consider NPS plans in determining recreation targets.

We can reasonably assume that all fish species that use the mainstem are affected by operations of the dam, even if we have difficulty precisely quantifying what those effects are. There does not appear to be any disagreement on this point. Clearly there are other factors that affect the species, but we can't separate dam operations and other factors out as we address this RIN. When the ad hoc committee has come across this situation with other INs, we have gone by the unspoken rule that if dam operations are a factor, then it is appropriate to answer the IN through funding from power revenues, and placed the IN in Category A. Since we have the same case here, this RIN is *appropriate* for funding by power revenues, and should be placed into Category A. (Whether

ACHIO memo to TWG

ii

power revenues are used for specific monitoring and/or research projects that address this RIN can be determined as part of the GCMRC workplan review.)

There may be some concern that determining population viability will be difficult and costly to do. However, this has no bearing on what category this RIN should be placed in, but should be addressed at the stage at which GCMRC is developing workplans. When we place RINs into categories, we are determining whether or not they are *appropriate to be addressed by GCMRC* and whether they are *appropriate for funding by power revenues*. We are not addressing the scope of answering the RIN, nor are we deciding to spend unlimited funds to answer it.

Reasons to support Category B or C for RIN 2.6.2 (by Randy Seaholm): In RIN 2.6.1, concerning what is a viable population, we are okay with the AMP, through the monitoring program, collecting certain data for use in helping to make an estimate of what a viable population is. However, once the information is collected, we are of the opinion that it is then the responsibility of the Arizona Fish and Game or the National Park Service if appropriate, to determine what the viable population value is. There are a number of ways to establish what a viable population is, again, we believe it is the responsibility of either Arizona Fish and Game or the National Park Service to describe the methodology that they believe is sufficient for determining what a viable population of any native fish species which is not endangered is. We are opposed to doing a full "Population Viability Analysis" absent a fully justified and demonstratable need for such. We understand that the AMP needs a value to use when it comes to setting targets, but it is not the responsibility of AMP to establish this value. Therefore, this is at least a Category B and likely a Category C task.

RIN 2.6.2 What are the significant threats to these species?

Reasons to support Category B or C for RIN 2.6.2 (by Randy Seaholm): With respect to the question of what is the probability of any native species becoming extirpated from the CRE, I believe Pam and I agreed that it was better to simply identify what the significant threats, if any, to these species were. That identification would be useful to help describe what the monitoring programs need to look like. Such an investigation would be appropriate as a Category A. If that analysis goes further into investigating the threat of particular events occurring, which are not dam related, then those investigations go into Category B or C.

Reasons to support Category A for RIN 2.6.2:

The AMP has an interest in keeping native fish species in Grand Canyon off the endangered species list. And in fact, we wish to do more than that – we wish to maintain viable populations of these native species.

Deleted: What is the probability of extinction over what management time period for species of concern? What is the appropriate method to assess viability?

ACHIO memo to TWG

iii

If we are going to maintain viable populations of these native fish species, we need to be aware of and monitor the significant threats to the species, which may include dam operations as well as other factors. When we get to the point of monitoring the threats, we may have the ability to separate funding sources so that we monitor the impact of dam operations on these species using power revenues, and monitor the impact of other factors on the species using appropriated funds. But to actually do the research to determine what the significant threats to these species are, we should apply the same standard that we have applied to other RINs that deal with both dam operations and other factors, and categorize this RIN as one that is *appropriate* for funding by power revenues. Thus it should be placed in Category A.

There does not seem to be any dispute that this RIN is appropriate to be addressed by GCMRC. It is not a question that is the exclusive responsibility and jurisdiction of any single agency to address, and therefore it is open for GCMRC to address as a key to meeting MO 2.6. One might argue that since Arizona Game and Fish Department and the National Park Service each have management responsibility for wildlife within Grand Canyon National Park, they would be the most logical agencies to determine significant threats. However, this is actually just a straightforward scientific question that helps focus monitoring and management efforts, and doesn't have regulatory implications. It would be equally, if not more, logical to have experts on these individual species weigh in on this question, whether they were employees of AGFD/NPS or not.

There may be some concern that determining significant threats will be difficult and costly to do. However, this has no bearing on what category this RIN should be placed in, but should be addressed at the stage at which GCMRC is developing workplans. When we place RINs into categories, we are determining whether or not they are *appropriate to be addressed by GCMRC* and whether they are *appropriate for funding by power revenues*. We are not addressing the scope of answering the RIN, nor are we deciding to spend unlimited funds to answer it.

Please feel free to contact any member of the AHCIO or me if you have any questions. The members of the Committee are as follows:

Randy Seaholm, Chair					
Robert Begay Wayne Cool					
Norm Henderson	Pam Hyde				
Clayton Palmer	Bill Persons				

Kurt Dongoske Phil Lehr Randy Peterson Lloyd Greiner Don Metz John Shields

ACHIO memo to TWG

iv

Proposed new principle to replace "RIN 12.3.3 What are the best scientific methods to determine cause and effect relationships in experiments and other management actions conducted under the GCDAMP?"

PRINCIPLES

The nine principles of the Glen Canyon Dam Adaptive Management Program are:

- The goals represent a set of desired outcomes that together will accomplish our vision and achieve the purpose of the Grand Canyon Protection Act. Some of the objectives and actions that fall under these goals may not be the responsibility of the Adaptive Management Program, and may be funded by other sources, but are included here for completeness.
- 2. The construction of Glen Canyon Dam and the introduction of non-native species have irreversibly changed the Colorado River ecosystem.
- 3. Much remains unknown about the Colorado River ecosystem below Glen Canyon Dam and how to achieve the Adaptive Management Program goals.
- 4. The Colorado River ecosystem is a managed ecosystem. An ecosystem management approach, in lieu of an issues, species, or resources approach, will guide our efforts. Management efforts will prevent any further human-induced extirpation or extinction of native species.
- An adaptive management approach will be used to achieve Adaptive Management Program goals, through experimentation and monitoring, to meet the intent of the Grand Canyon Protection Act, Glen Canyon Dam Environmental Impact Statement, and the Record of Decision.
- 6. Understanding cause and effect relationships is essential for managing the Colorado River
 ecosystem. The adaptive management approach will be geared toward gaining an improved understanding of the cause and effect relationships that occur within the Colorado River ecosystem, and their connection, if any, to dam operations, while also documenting resource status and trends.
- 7. Dam operations and management actions will be tried that attempt to return ecosystem patterns and processes to their range of natural variability. When this is not appropriate, experiments will be conducted to test other approaches.
- 8. Because management actions to achieve a goal may benefit one resource or value and adversely affect another, those action alternatives that benefit all resources and values will be pursued first. When this is not possible, actions that have a neutral impact, or as a last resort, actions that minimize negative impacts on other resources, will be pursued consistent with the Glen Canyon Dam Environmental Impact Statement and the Record of Decision.
- <u>9.</u> If the target of a management objective proves to be inappropriate, unrealistic, or unattainable, the Adaptive Management Program will reevaluate that target and the methods used to attain it.
- 10. Recognizing the diverse perspectives and spiritual values of the stakeholders, the unique aesthetic value of the Grand Canyon will be respected and enhanced.

ACHIO memo to TWG

Formatted: Bullets and Numbering

v

Glen Canyon Dam Adaptive Management Program FINAL DRAFT INFORMATION NEEDS

November 7, 2002

Updated March 31, 2003 With Recommendations from the	Formatted
Ad Hoc Committee on What's In and Out of the Strategic Plan (AHCIO)	Formatted

NOTE from November 7, 2002: This version of the draft Information Needs reflects recommended sequence order and changes developed by the TWG at their November 7, 2002 meeting. When approved by AMWG for recommendation to the Secretary of the Interior, the Information Needs and other information included in this document will be incorporated into the next version of the Strategic Plan.

Core Monitoring INs are not sequenced because the core monitoring function is ongoing. EINs are not sequenced, with the exception of the two EINs that do not have a corresponding RIN: 11.3.1 and 11.3.2.

NOTE from January 28, 2003: This version of the Information Needs includes changes approved by AMWG at its January 2003 meeting. These were the deletion of all INs under MO 12.2, the deletion of RIN 6.5.4, and adding the narrative now found under MO 12.2. These changes are not redlined.

NOTE from March 31, 2003: This version of the Information Needs includes recommended changes from the Ad Hoc Committee on What's In and Out of the Strategic Plan (AHCIO). These include the addition of categories for each Information Need, per direction from AMWG at its January 2003 meeting, as well as some recommended changes to Information Needs. The recommended changes come in part from the application of the criteria for what should be included in the Strategic Plan, per direction from the AMWG from its January 2003 meeting. They also include amendments to the language under MO 12.2, and the moving of that language to immediately after Goal 12. These changes are redlined.

Introduction

The Information Needs (INs) provided in this document represent data needed to meet management objectives and programmatic goals. The Information Needs are nested within Management Objectives and are categorized as: core monitoring information needs (CMIN), effects monitoring information needs (EIN), or research information needs (RIN), defined below. In an effort to reflect integration across resource programs, some Information Needs are supporting information needs for other resources (SIN). Information Needs that do not fit under any particular management objective, but are necessary to achieve the goal are placed above the Management Objectives for that goal.

The process for developing these INs is described in Appendix 1.

ACHIO memo to TWG

+	Formatted
	Formatted
	Formatted

Glossary

NOTE: Glossary entries that are already included in the Strategic Plan have been deleted. The glossary entries below should be added to the next version of the Strategic Plan.

<u>Management Objectives (MOs)</u>: Management Objectives define desired future resource conditions. They should be: 1) Specific; 2) Measurable; 3) Achievable; 4) Results-oriented; 5) Time-specific, and 6) within the legal and policy framework of the Adaptive Management Program.

<u>Information Needs (INs)</u>: Information Needs define the specific knowledge or understanding (i.e., information) one needs for accomplishing a management objective. They define what one needs to know. The information may be needed to:

- a) quantify or define a management objective (i.e., help determine a target level);
- b) assess whether or not a management objective is being achieved (i.e., help determine why the system is not responding as predicted);
- c) develop basic understanding about cause and effect relationships;
- d) meet the legal/policy requirements of consultation; and
- e) test more effective ways to achieve desired resource conditions.

Information Needs are categorized as follows:

- Core Monitoring Information Need (CMIN): Core monitoring consists of consistent, long-term, repeated measurements using set protocols, and is designed to establish status and trends in meeting specific management objectives. Core monitoring is implemented on a fixed schedule regardless of variable factors or circumstances (e.g., water year, experimental flows, temperature control, stocking strategy, non-native control, etc.) affecting target resources.
- Effects Monitoring Information Need (EIN): Effects monitoring is the collection of data associated with an experiment performed under the Record of Decision, unanticipated event, or other management action. Changes in resource conditions measured by effects monitoring generally will be short-term responses. The purpose of effects monitoring is to supplement the fixed schedule and variables collected under core monitoring. This will both increase the understanding of the resource status and trends and provide a research opportunity to discover the effect of the experiment or management action.
- Research Information Need (RIN): Research can be <u>descriptive</u> or <u>experimental</u>. When descriptive it describes relationships in the Colorado River ecosystem (e.g., describe trophic interactions in the aquatic ecosystem). When experimental it tests specific hypotheses for determining and understanding

ACHIO memo to TWG

cause and effects relationships between dam operations, or other driving variables, and resource responses (e.g., how is the abundance and composition of benthic invertebrates affected by grazers, predators and dam operations?). Research requires a purposeful design with established statistical criteria, including allowable errors for accepting and rejecting null hypotheses. Research may also result in the collection of data that can be used to help determine or refine Core Monitoring Information Needs.

- Supporting Information Need (SIN): A SIN contributes to understanding the basis for a resource response and its link to other resource management goals.
- Status and Trends: Status refers to the condition of a resource at a given time or place. Trends refer to a statistically based temporal or spatial series for a given resource, during the periods and at the locations where data were collected.
- Cause and Effect: Cause and effect assigns a resource response to a particular event(s) or driving variable(s).
- Glen Canyon Dam Operations: Glen Canyon Dam operations refers to the operation of the power plant and other release structures, such as bypass structures, spillways, and potentially a temperature control device among others. Their uses conform to applicable law. The AMWG develops recommendations for all of the dam's structures to further the purposes of the GCPA and meet the environmental commitments in the EIS/Record of Decision on the operations of Glen Canyon Dam. This is done within the limits of the Record of Decision and/or through experimentation.
- Record of Decision Operations: Record of Decision operations are defined as the modified low fluctuating flow alternative described in the Record of Decision including restrictions on upramp and downramp rates, the allowable range of daily fluctuations and the allowable minimum and maximum daily flows. In addition operations include beach/habitat-building flows (up to 45,000 cfs) habitat maintenance flows (up to power plant capacity) and any flows defined as experiments within the environmental commitments of the Record of Decision.

NOTE: The MOs presented in this document represent language that has been extracted and paraphrased from the original MOs table. It is included here to provide a context for reviewing the INs without having to embed them in the original Goals and MOs table. In the next version of the Strategic Plan, approved Information Needs and their sequence order will be incorporated into the MOs table.

Key to Categories, as approved by AMWG January 2003:	 Formatted
Category A: Information Needs that are appropriate for funding by power revenues	 Formatted
and for accomplishment by the Grand Canyon Monitoring and Research Center	
(GCMRC).	

ACHIO memo to TWG

Category B: Information Needs that may be addressed by the GCMRC but are not	 Formatted
appropriate for funding by power revenues.	 Formatted
Category C: Information Needs that are funded and accomplished under the authority	 Formatted
of an entity other than the GCMRC.	 Formatted

Goal 1. Protect or improve the aquatic foodbase so that it will support viable populations of desired species at higher trophic levels.

	<u>Sequence</u>				
	<u>Order</u>	Category	Research INs	(
	4	<u>A</u>	RIN 1.1 What are the fundamental trophic interactions in the aquatic ecosystem?	1	Formatted
	5	Α	RIN 1.2 How are the production, composition, density, and biomass of the benthic invertebrate community affected by primary productivity vs. allochthonous inputs?	{	Formatted
	5	Α	RIN 1.3 What foodbase criteria do other agencies use to assess aquatic ecosystem health?	{	Formatted
	4	Α	RIN 1.4 What is the current carbon budget for the Colorado River ecosystem?	{	Formatted

M.O. 1.1 Maintain or attain primary producers (algae, macrophytes) biomass and community composition in the Glen Canyon Reach.

Category Core Monitoring INs

A **CMIN 1.1.1** Determine and track the composition and biomass of primary producers between Glen Canyon Dam and the Paria River in conjunction with measurements of flow, nutrients, water temperature, and light regime.

<u>Sequence</u> <u>Order</u>	Category	Research INs	
5	Δ	RIN 1.1.1 How are the composition and biomass of primary producers between Glen Canyon Dam and the Paria River affected by flow and water quality (including nutrients, temperature, light regime, toxins, dissolved oxygen), and water borne diseases, or other factors.	Formatted
9	<u>A</u>	RIN 1.1.2 What is the estimated productivity for the reach between Glen Canyon Dam and the Paria River? [Note: If the cost of obtaining this data, relative to the benefit of the information suggests the information is not worth the expense, this RIN will not be pursued.]	Formatted
6	<u>A</u>	RIN 1.1.3 How do top-down effects (grazing and predation) on primary producers affect food base productivity?	Formatted
5	A	RIN 1.1.4 What are the habitat characteristics between Glen Canyon Dam and the Paria River that most affect primary productivity? How are these characteristics affected by Glen	Formatted

ACHIO memo to TWG

Canyon Dam operations?

	A	Effects INs EIN 1.1.1 How does primary productivity for the reach between Glen Canyon Dam and the Paria River change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action? tain benthic invertebrates biomass and community composition ach.	 Formatted
	Category	Core Monitoring INs	
Sequence	Δ	CMIN 1.2.1 Determine and track the composition and biomass of benthic invertebrates in the reach between Glen Canyon Dam and the Paria River in conjunction with measurements of flow, nutrients, water temperature, and light regime.	 Formatted
Order	Category	Research INs	
5	Δ	RIN 1.2.1 How are the composition and biomass of benthic invertebrates between Glen Canyon Dam and the Paria River affected by flow, water quality (including nutrients, temperature, light regime, toxins, dissolved oxygen), new invasive species, and water borne diseases, or other factors?	 Formatted
5	<u>A</u>	RIN 1.2.2 What is the estimated productivity of benthic invertebrates for the reach between Glen Canyon Dam and the Paria River? [Note: If the cost of obtaining this data, relative to the benefit of the information suggests the information is not worth the expense, this RIN will not be pursued.]	 Formatted
6	Δ	RIN 1.2.3 How do top-down effects (grazing and predation) affect the abundance and composition of benthic invertebrates?	 Formatted
5.5	Δ	RIN 1.2.4 What are the habitat characteristics between Glen Canyon Dam and the Paria River that most affect benthic invertebrates? How are these characteristics affected by Glen Canyon Dam operations?	 Formatted
	Category	Effects INs	
	<u>A</u>	EIN 1.2.1 How do benthic invertebrates in the reach between Glen Canyon Dam and the Paria River change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	 Formatted

ACHIO memo to TWG

M.O. 1.3 Maintain or attain adequate levels of energy sources (algae, macrophytes) in the Colorado River ecosystem (to the extent primary producers in the tributaries are influenced by dam operations) below the Paria River.

ī							
		Category	Core Monitoring INs				
1		Δ	CMIN 1.3.1 Determine and track the composition and biomass of primary producers in the Colorado River ecosystem below the Paria River.	Formatted			
	<u>Sequence</u> <u>Order</u>	<u>Category</u>	Research INs				
	5.5	Δ	RIN 1.3.1 How are the composition and biomass of primary producers in the Colorado River ecosystem below the Paria River affected by flow and water quality (including nutrients, temperature, light regime, toxins, dissolved oxygen), and water borne diseases, or other factors.	Formatted			
	8	Δ	RIN 1.3.2 What is the estimated primary productivity in the Colorado River ecosystem below the Paria River? [Note: If the cost of obtaining this data, relative to the benefit of the information suggests the information is not worth the expense, this RIN will not be pursued.]	- Formatted			
	6	Α	RIN 1.3.3 How do top-down effects on primary producers (grazing and predation) affect food base productivity?	Formatted			
	6	Δ	RIN 1.3.4 What are the habitat characteristics in the Colorado River ecosystem below the Paria River that most affect primary productivity? How are these characteristics affected by Glen Canyon Dam operations?	- Formatted			
		Category	Effects INs				
		Δ	EIN 1.3.1 How does primary productivity in the Colorado River ecosystem below the Paria River change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	Formatted			
			tain benthic invertebrates biomass and community composition				
			cosystem (to the extent benthic invertebrates in the tributaries				
	are influenced by dam operations) below the Paria River.						

Category Core Monitoring INs

A CMIN 1.4.1 Determine and track the composition and biomass of benthic invertebrates in the Colorado River ecosystem below the Paria River in conjunction with measurements of flow, nutrients, water temperature, and light regime.

ACHIO memo to TWG

Page 7

Formatted

	<u>Sequence</u>			
	<u>Order</u>	Category	Research INs	
	5	Δ	RIN 1.4.1 How are the composition and biomass of benthic invertebrates in the Colorado River ecosystem below the Paria River affected by flow, water quality (including nutrients, temperature, light regime, toxins, dissolved oxygen), new invasive species, and water borne diseases, or other factors? [Note: If the cost of obtaining this data, relative to the benefit of the information suggests the information is not worth the expense, this RIN will not be pursued.]	Formatted
	8	Δ	RIN 1.4.2 What is the estimated productivity of benthic invertebrates in the Colorado River ecosystem below the Paria River? [Note: If the cost of obtaining this data, relative to the benefit of the information suggests the information is not worth the expense, this RIN will not be pursued.]	Formatted
	5.5	<u>A</u>	RIN 1.4.3 How do top-down effects (grazing and predation) affect the abundance and composition of benthic invertebrates?	Formatted
	6	<u>A</u>	RIN 1.4.4 What are the habitat characteristics in the Colorado River ecosystem below the Paria River that most affect benthic invertebrates? How are these characteristics affected by Glen Canyon Dam operations?	Formatted
		Category	Effects INs	
			EIN 1.4.1 How do benthic invertebrates in the Colorado River ecosystem below the Paria River change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	Formatted
	tributaries (to	o the extent	t drift in the tributaries is influenced by dam operations).	
		Category	Core Monitoring INs	
	C	<u>A</u>	CMIN 1.5.1 Determine and track the composition and biomass of drift in the Colorado River ecosystem.	Formatted
	<u>Sequence</u> <u>Order</u>	Category	Research INs	
	5.5	Δ	RIN 1.5.1 How are the composition and biomass of drift in the Colorado River ecosystem affected by flow and water quality (including nutrients, temperature, light regime, toxins, dissolved oxygen), and water borne diseases, or other factors?	Formatted
	5	<u>A</u>	RIN 1.5.2 How do top-down effects (grazing and predation)	Formatted

3	Α	affect the abundance and composition of drift? RIN 1.5.3 How has the value and availability of drift as a food source for Humpback chub changed with the implementation of Record of Decision operations?	Formatted
	Category	Effects INs	
	<u>A</u>	EIN 1.5.1 How does drift in the Colorado River ecosystem change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	Formatted

Goal 2. Maintain or attain viable populations of existing native fish, remove jeopardy for humpback chub and razorback sucker, and prevent adverse modification to their critical habitats.

M.O. 2.1 Maintain or attain humpback chub abundance and year-class strength in the LCR and other aggregations at appropriate target levels for viable populations and to remove jeopardy.

	Category	Core Monitoring INs	
	<u>A</u>	CMIN 2.1.1 Determine and track year class strength of HBC between 51 – 150 mm in the LCR and the mainstem.	Formatted
	A	CMIN 2.1.2 Determine and track abundance and distribution of all size classes of HBC in the LCR and the mainstem.	Formatted
<u>Sequence</u> <u>Order</u>	<u>Category</u>	Research INs	
2.5	Accomp- lished	RIN 2.1.1 What is the minimum population size of HBC that should be sustained in the LCR, to ensure a viable spawning population of HBC in the LCR?	
1	<u>A</u>	RIN 2.1.2 Quantify sources of mortality for humpback chub < 51 mm in rearing habitats in the LCR and mainstem and how these sources of mortality are related to dam operations.	Formatted
1.5	A	RIN 2.1.3 What is the relationship between size of HBC and mortality in the LCR and the mainstem? What are the sources of mortality (i.e., predation, cannibalism, other) in the LCR and the mainstem?	Formatted
2	Α	RIN 2.1.4 What habitats enhance recruitment of native fish in	Formatted
		the LCR and mainstem? What are the physical and biological	
2	Ą	characteristics of those habitats? RIN 2.1.5 Determine the timing and quantity of young-of-year	Formatted
	<u>~</u>	humpback chub dispersal (passive and active) from the LCR.	
	Category	Effects INs	
	<u>A</u>	EIN 2.1.1 How does the abundance and distribution of all size classes of HBC in the LCR and mainstem change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	Formatted
	A	EIN 2.1.2 How does the year class strength of HBC (51 – 150 mm) in the LCR and mainstem change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	Formatted
	A	EIN 2.1.3 How does the abundance and distribution of recruiting HBC in the LCR and mainstem change in response to an experiment performed under the Record of Decision,	Formatted

ACHIO memo to TWG

unanticipated event, or other management action?

M.O. 2.2 Sustain or establish viable HBC spawning aggregations outside of the LCR in the Colorado River ecosystem below Glen Canyon Dam to remove jeopardy.

<u>Order</u>	Category	Research INs	
3.5	<u>Accomp</u> - lished	RIN 2.2.1 What is a viable population and what is the appropriate method to assess population viability of native fish in the Colorado River ecosystem? What is an acceptable probability of extinction over what management time period for humpback chub throughout the Colorado River ecosystem?	Formatted
4	Ą	RIN 2.2.2 Determine if a population dynamics model can effectively predict <u>response</u> of native fish under different flow regimes and environmental conditions.	Formatted Deleted: viability
2	<u>c</u>	RIN 2.2.3 What are the measurable criteria that need to be met in order to remove jeopardy for humpback chub in the Colorado River ecosystem?	Formatted
2.5	Α	RIN 2.2.4 What is the relationship between the "aggregations" in the mainstem and LCR? Are mainstem aggregations "sinks" of the LCR? Are aggregations real or due to sampling bias?	Formatted
2	Α	RIN 2.2.5 What are the appropriate habitat conditions for HBC spawning? Where are these found? Can they be created in the mainstem?	Formatted
4	<u>A</u> 1	RIN 2.2.6 What are the criteria for establishment of spawning aggregations (i.e., how does one determine <u>if it is</u> "established")?	Deleted: its
3	Α	RIN 2.2.7 Determine if implementation and operation of the TCD and/or steady flows represent a technically feasible, ecologically sustainable, and practical option for establishing mainstem spawning.	Formatted
2	Δ	RIN 2.2.8 What combination of dam release patterns and non- native fish control facilitates successful spawning and recruitment of humpback chub in the Colorado River ecosystem?	- Formatted
2	Α	RIN 2.2.9 What is the appropriate role of humpback chub augmentation as a management strategy to establish mainstem spawning aggregations?	

Department of the Interior Appropriations Bill that established the power revenue cap, this RIN is placed in Category A.

ACHIO memo to TWG

3	Α	RIN 2.2.10 What techniques are available to determine natal	ł	Formatted
		stream of fishes in the Colorado River ecosystem?		
6	A	RIN 2.2.11 What are the impacts of current recreational		Formatted
		activities on mortality, recruitment and the population size of humpback chub?		
3	Α	RIN 2.2.12 What are the impacts of research activities on		Formatted
		mortality, recruitment and the population size of humpback chub?		

M.O. 2.3 Monitor HBC and other native fish condition and disease/parasite numbers in LCR and other aggregations at an appropriate target level for viable populations and to remove jeopardy.

	<u>Category</u>	Core Monitoring INs	{	Formatted
	<u>A</u>	CMIN 2.3.1 Determine and track the parasite loads on HBC and other native fish found in the LCR and in the Colorado River ecosystem.	- (Formatted
Convence	A	CMIN 2.3.2 Determine and track status and trends in the condition (Kn or Wr) of HBC and other native fish found in the LCR and in the Colorado River ecosystem?	-1	Formatted
<u>Sequence</u> <u>Order</u>	Category	Research INs	{	Formatted
3	Α	RIN 2.3.1 How do parasite/disease loads affect population viability?	- (Formatted
2	Α	RIN 2.3.2 How will warming mainstem temperatures affect the abundance and distribution of parasites/disease?	{	Formatted
3.5	Δ	RIN 2.3.3 How does non-native fish control affect disease/parasite loads? [Note: The concept is if there are fewer hosts, there will be a lower incidence of parasites.]	(Formatted
	Category	Effects Monitoring INs	{	Formatted
	Δ	EIN 2.3.1 How do disease/parasite loads on HBC and other native fish found in the LCR and in the Colorado River ecosystem change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	- (Formatted
M.O. 2.4 Re	duce native	fish mortality due to non-native fish predation/competition as a		

M.O. 2.4 Reduce native fish mortality due to non-native fish predation/competition as a percentage of overall mortality in the LCR and mainstem to increase native fish recruitment.

Category	Core Monitoring INs	- 1	Formatted
<u>A</u>	CMIN 2.4.1 Determine and track the abundance and	- 1	Formatted

ACHIO memo to TWG

distribution of non-native predatory fish species in the Colorado River ecosystem and their impacts on native fish.

<u>Sequence</u>		raver ecosystem and their impacts of halfve fish.	
Order	Category	Research INs	Formatted
2	Δ	RIN 2.4.1 What are the most effective strategies and control methods to limit non-native fish predation and competition on native fish?	Formatted
2.5	Δ	RIN 2.4.2 Determine if suppression of non-native predators and competitors increases native fish populations?	Formatted
2	Δ	RIN 2.4.3 To what degree, which species, and where in the system are exotic fish a detriment to the existence of native fish through predation or competition?	Formatted
3	Δ	RIN 2.4.4 What are the target population levels, body size and age structure for non-native fish in the Colorado River ecosystem that limit their levels to those commensurate with the viability of native fish populations?	Formatted
3	Δ	RIN 2.4.5 What are the sources (natal stream) of nonnative predators and competitors?	Formatted
2.5	A	RIN 2.4.6 What are the population dynamics of those non- native fish that are the major predators and competitors of native fish?	Formatted
	Category	Effects Monitoring INs	Formatted
	<u>A</u>	EIN 2.4.1 How does the abundance and distribution of non- native predatory fish species and their impacts on native fish species in the Colorado River ecosystem change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	

M.O. 2.5 Attain Razorback sucker abundance and critical habitat condition sufficient to remove jeopardy as feasible and advisable in the Colorado River ecosystem below Glen Canyon Dam.

<u>Sequence</u>			{	Formatted
<u>Order</u>	Category	Research INs		
11	<u>A</u>	RIN 2.5.1 If razorback suckers were stocked into the Colorado	1	Formatted
		River ecosystem, what is the risk that hybridization with flannelmouth suckers would compromise the genetic integrity of either species?		
,11	A	RIN 2.5.2 How does existing hybridization between razorback	1	Formatted
		suckers and flannelmouth suckers affect the genetic integrity of either species? What are the factors contributing to this ongoing hybridization?		

ACHIO memo to TWG

4.5	<u>A</u>	RIN 2.5.3 What characteristics define suitable habitat for razorback sucker? Does suitable habitat for razorback sucker occur in the Colorado River ecosystem?
8	<u> </u>	RIN 2.5.4 What is the feasibility and advisability of augmenting Formatted razorback sucker in the Colorado River ecosystem to attain a
9	٨	viable population including technical/legal/policy constraints? RIN 2.5.5 What are the genetic and ecological criteria for
9	<u>A</u>	reintroducing razorback sucker into the Colorado River ecosystem?
<u>,11</u>	<u>C</u>	RIN 2.5.6 What are the measurable criteria that would need to Formatted be met to remove jeopardy for razorback sucker in the Colorado River ecosystem?

M.O. 2.6 Maintain (flannelmouth sucker, bluehead sucker and speckled dace) abundance and distribution in the Colorado River ecosystem below Glen Canyon Dam for viable populations.

A	Category	Core Monitoring INs	+	Formatted
▲	<u>A</u>	CMIN 2.6.1 Determine and track the abundance and distribution of flannel-mouth sucker, blue-head sucker, and speckled dace populations in the Colorado River ecosystem.		Formatted
Sequence		· · · ·	+	Formatted
<u>Order</u>	Category	Research INs		Formethed
2		RIN 2.6.1 What is a viable population?		Formatted
2		RIN 2.6.2 What are the significant threats to these species?		Formatted
6	<u>A</u>	RIN 2.6.3 What are the physical and biological characteristics of habitats that enhance recruitment of flannel-mouth sucker.	< < </td <td>Deleted: What is the probability of extinction over what management time period for species of concern? What is the appropriate method to assess viability?</td>	Deleted: What is the probability of extinction over what management time period for species of concern? What is the appropriate method to assess viability?
		blue-head sucker, and speckled dace populations in the	\sim	Deleted: 2
		Colorado River ecosystem?		Formatted
4.5	Α	RIN 2.6.4 , What is the age structure, including relationship		Formatted
•		between age and size of flannel-mouth sucker, blue-head sucker, and speckled dace in the Colorado River ecosystem?		Deleted: 3
4	Α	RIN 2.6.5 How are movement patterns for flannel-mouth	1-1-	Formatted
•		sucker, blue-head sucker, and speckled dace in the Colorado River ecosystem affected by age, natal stream, and dam operations?		Deleted: 4
4	Α	RIN 2.6.6 How is the rate of mortality for flannel-mouth sucker,		Formatted
•		blue-head sucker, and speckled dace in the Colorado River ecosystem related to individual body size? What are the sources of mortality for flannel-mouth sucker, blue-head sucker, and speckled dace in the Colorado River ecosystem?		Deleted: 5
5	Α	RIN 2.6.7 How does temperature modification in the mainstem	1-1-	Deleted: 6
•		affect recruitment and mortality for flannel-mouth sucker, blue- head sucker, and speckled dace originating from tributary spawning efforts?		Formatted
A	Category	Effects Monitoring INs		Formatted
*	<u>A</u>	EIN 2.6.1 How does the abundance, distribution, recruitment and mortality of flannel-mouth sucker, blue-head sucker and speckled dace populations in the Colorado River ecosystem change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	1	Formatted

ACHIO memo to TWG

Goal 3. Restore populations of extirpated species, as feasible and advisable.

M.O. 3.1 Restore Colorado pikeminnow, bonytail, and roundtail chub and river otter abundances in the Colorado River ecosystem as feasible and advisable.

<u>Sequence</u> <u>Order</u>	<u>Category</u>	Research INs	{	Formatted
9.5	<u>.</u>	RIN 3.1.1 What information (including technical, legal, economic, and policy issues) should be considered in determining the feasibility and advisability of restoring pikeminnow, bonytail, roundtail chub, river otter, or other extirpated species?	- (Formatted

ACHIO memo to TWG

Goal 4. Maintain a wild reproducing population of rainbow trout above the Paria River, to the extent practicable and consistent with the maintenance of viable populations of native fish.

M.O. 4.1 Maintain or attain RBT abundance, proportional stock density, length at age, condition, spawning habitat, natural recruitment and prevent or control whirling disease and other parasitic infections.

_	Category	Core Monitoring INs	Formatted
▲	<u>A</u>	CMIN 4.1.1 Determine annual population estimates for age II+ rainbow trout in the Lees Ferry reach.	Formatted
.	<u> </u>	CMIN 4.1.2 Determine annual proportional stock density of rainbow trout in the Lees Ferry reach.	Formatted
.	<u>A</u>	CMIN 4.1.3 Determine annual rainbow trout growth rate in the Lees Ferry reach.	Formatted
.	<u>A</u>	CMIN 4.1.4 Determine annual standard condition (Kn) and Relative weight of rainbow trout in the Lees Ferry reach.	Formatted
.	<u>A</u>	CMIN 4.1.5 Determine if whirling disease is present in the Lees Ferry reach. Determine annual incidence and relative infestation of trout nematodes in rainbow trout in the Lees Ferry reach.	Formatted
.	<u>A</u>	CMIN 4.1.6 Determine quantity and quality of spawning habitat for rainbow trout in the Lees Ferry reach as measured at 5-year intervals.	Formatted
▲	<u>A</u>	CMIN 4.1.7 Determine annual percentage of naturally recruited rainbow trout in the Lees Ferry reach.	Formatted
<u>quence</u>	Cotogony		Formatted
<u>10</u>	<u>Category</u>	Research INs RIN 4.1.1 What is the target proportional stock density (i.e., trade-off between numbers and size) for rainbow trout in the Lees Ferry reach?	Formatted Formatted
9	<u> </u>	RIN 4.1.2 What is the minimum quantity and quality of spawning substrate necessary for maintaining a wild reproducing rainbow trout population in the Lees Ferry reach?	Formatted Formatted
4.5	<u>A</u>	RIN 4.1.3 To what extent is there overlap in the Lees Ferry reach of RBT habitat and native fish habitat?	Formatted Formatted
10	<u>A</u>	RIN 4.1.4 How does the genetics or "strain" of rainbow trout in the Lees Ferry reach influence the average size of fish creeled by anglers?	Formatted

ACHIO memo to TWG

Category	Effects Monitoring INs		Formatted
А	EIN 4.1.1 How does RBT abundance, proportional stock	11	Formatted
A	density, length at age, condition, spawning habitat, natural	/	Formatted
	recruitment, whirling disease and other parasitic infections change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?		

M.O. 4.2 Limit Lees Ferry RBT distribution below the Paria River of the Colorado River ecosystem to reduce competition or predation on downstream native fish.

Sequence				Formatted
<u>Order</u>	Category	Research INs		
2.5	Α	RIN 4.2.1 What is the rate of emigration of rainbow trout from	1	Formatted
•		the Lees Ferry reach?		
2.5	Α	RIN 4.2.2 What is the most effective method to detect		Formatted
		emigration of rainbow trout from the Lees Ferry reach?		
4.5	А	RIN 4.2.3 How is the rate of emigration of RBT from the Lees	1	Formatted
•		Ferry reach to below the Paria River affected by abundance,		
		hydrology, temperature, and other ecosystem processes?		
5.5	<u>A</u>	RIN 4.2.4 What is the target population size of RBT appropriate	, 1 ⁻	Formatted
		for the Lees Ferry reach that limits downstream emigration?		
4.5	<u>A</u>	RIN 4.2.5 To what extent is there overlap in the Colorado River		Formatted
		ecosystem below the Paria River of RBT habitat and native fish		
		habitat?		Formatted
2	<u>A</u>	RIN 4.2.6 To what extent are RBT below the Paria River		rormatted
		predators of native fish, primarily HBC? At what size do they		
		become predators of native fish, especially HBC, i.e. how do the trophic interactions between RBT and native fish change		
		with size of fish?		
3.5	А	RIN 4.2.7 What dam release patterns most effectively maintain	11	Formatted
0.0	<u>^</u>	the LEES Ferry RBT trophy fishery wile limiting RBT survival		
		below the Paria River?		

ACHIO memo to TWG

Goal 5. Maintain or attain viable populations of Kanab ambersnail.

MO 5.1 Attain and maintain Kanab ambersnail population at Vasey's Paradise from the current level to the target level.

A	Category	Core Monitoring INs	(Formatted
*	<u>A</u>	CMIN 5.1.1 Determine and track the abundance and distribution of Kanab ambersnail at Vasey's Paradise in the lower zone (below 100,000 cfs) and the upper zone (above 100,000 cfs).	{	Formatted
<u>Sequence</u> <u>Order</u>	Category	Research INs	(Formatted
6.5	<u>A</u>	RIN 5.1.1 What constitutes population viability for Kanab ambersnail at Vasey's Paradise?	{	Formatted
5	<u>A</u>	RIN 5.1.2 What parameters have the greatest influence on population viability of Kanab ambersnail at Vasey's Paradise (e.g., parasites, predation, discharges, habitat size, quality, and human use/visitation)?	1	Formatted
5	<u>A</u>	RIN 5.1.3 Develop a population dynamic model to predict Kanab ambersnail viability under different flows and environmental conditions.	{	Formatted
4	<u>A</u>	RIN 5.1.4 Identify and evaluate alternative Management Actions to ensure viability of Kanab ambersnail at Vasey's Paradise where (1) the population dynamic model predicts loss of population viability, or (2) monitoring discovers substantial habitat or Kanab ambersnail population declines.	1	Formatted
2.5	<u>C</u>	RIN 5.1.5 What is the taxonomic identity of the <i>Oxyloma</i> snails at Vasey's Paradise? Is a change to the existing taxonomic status warranted?	(Formatted
2.5	<u>C</u>	RIN 5.1.6 What is the range of occurrence of the ambersnail taxon found at Vasey's Paradise? [NOTE: Intended to address the issue of whether this is an endemic population or a relict population or part of a metapopulation.]	{	Formatted
9	<u>C</u>	RIN 5.1.7 What is the historic range of <u>Oxyloma haydeni</u> ? Can this range be determined from subfossil or fossil evidence? [NOTE: This is intended to determine if this is a relict species and the initial work would be done at Vasey's Paradise, South Canyon and other probable sites within the Colorado River ecosystem.]		Formatted Formatted
4	<u>A</u>	RIN 5.1.8 What are the measurable criteria that need to be met to remove jeopardy for Kanab ambersnail at Vasey's Paradise?	{	Formatted
3	<u>A</u>	RIN 5.1.9 How can incidental take for Kanab ambersnail at	{	Formatted

ACHIO memo to TWG

Vasey's Paradise be minimized?

(Category	Effects Monitoring INs		Formatted
	Α	EIN 5.1.1 How does Kanab ambersnail population abundance	1	Formatted
•		and recovery change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?		
MO 5.2 Maint the target level		ambersnail habitat at Vasey's Paradise from the current level to		
_	Category	Core Monitoring INs		Formatted
▲	<u>A</u>	CMIN 5.2.1 Determine and track the size and composition of the habitat used by Kanab ambersnail at Vasey's Paradise.		Formatted
	Category	· · · · · · · · · · · · · · · · · · ·		Formatted
<u>Order</u>		Research INs		
5	<u>A</u>	RIN 5.2.1 How does the size, quality, and recovery time of Kanab ambersnail habitat change following natural scours, or other events?		Formatted
2	<u>A</u>	RIN 5.2.2 How does the size and quality of the habitat used by Kanab ambersnail change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?		Formatted
6.5	<u>A</u>	RIN 5.2.3 How can remote sensing technologies be used to less intrusively and more cost effectively characterize and monitor Kanab ambersnail habitat at Vasey's Paradise (vegetation type and distribution)?		Formatted
.	Category	Effects INs	11	Formatted
	A	EIN 5.2.1 How does Kanab ambersnail habitat at Vasey's	11	Formatted
		Paradise change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?		

ACHIO memo to TWG

Goal 6. Protect or improve the biotic riparian and spring communities within the Colorado River ecosystem, including threatened and endangered species and their critical habitat.

Sequence				
Order	Category	Information Needs		Formatted
6	<u>A</u>	IN 6.1 Develop GIS coverages of natural communities in the Colorado River ecosystem to use in identification of status and trends.		Formatted
6.5	<u>A</u>	IN 6.2 Develop or adopt an existing ecological community classification system. The system should describe the composition and frequency of vascular plants, vertebrates, arthropods, and mollusks to an appropriate taxonomic level.		Formatted
6	<u>A</u>	IN 6.3 How is the abundance of vertebrate consumers affected by seasonal shifts in food base abundance in the Colorado River ecosystem?		Formatted
5	<u>A</u>	IN 6.4 How much allochthonous material (e.g., leaf litter) is exchanged between the terrestrial and aquatic systems?		Formatted
		h community abundance, composition, and area in the Colorado h a manner that native species are not lost.		
·	Category	Core Monitoring INs	+	Formatted
<u>،</u>	<u> </u>	CMIN 6.1.1 Determine and track the abundance, composition, distribution, and area of the marsh community as measured at 5-year or other appropriate intervals based on life cycles of the species and rates of change for the community.		Formatted
Sequence Order	- <u>Category</u> -	Research INs		Formatted
5	<u>A</u>	RIN 6.1.1 How has the abundance, composition, distribution, and area of the marsh community changed since dam closure (1963), high flows (1984), interim flows (1991) and the implementation of Record of Decision operations (1996)?		Formatted
.	Category	Effects INs		
1	Δ	EIN 6.1.1 How do marsh community abundance, composition,		Formatted

distribution, and area change in response to an experiment performed under the Record of Decision, unanticipated event,

or other management action?

ACHIO memo to TWG

M.O. 6.2 Maintain NHWZ community patch number and distribution, composition and area to be no lower than values estimated for 1984.

	Category	Core Monitoring INs		Formatted
A	A	CMIN 6.2.1 Determine and track the patch number, patch		Formatted
▲		distribution, composition and area of the NHWZ community as		
		measured at 5-year or other appropriate intervals based on life		
0	0-1	cycles of the species and rates of change for the community.		(-)
Sequence Order	Category	Research INs		Formatted
	•			Formatted
4.5	<u> <u> </u></u>	RIN 6.2.1 How has the patch number, patch distribution, composition and area of the NHWZ community changed since	1	
		dam closure (1963), high flows (1984), interim flows (1991) and		
		the implementation of Record of Decision operations (1996)?		
. (Category	Effects INs	11	Formatted
A	A	EIN 6.2.1 How does the patch number, patch distribution,	1	Formatted
▲		composition and area of the NHWZ community change in		
		response to an experiment performed under the Record of		
		Decision, unanticipated event, or other management action?		
		Z community abundance, composition, and distribution in the		
Colorado Rive				
<u>(</u>	Category	Core Monitoring INs		
	Α	CMIN 6.3.1 Determine and track the abundance, composition	1	Formatted
		and distribution of the OHWZ community as measured at 5-		
		year or other appropriate intervals based on life cycles of the		
Sequence		species and rates of change for the community.		
	Category	Research INs		Formatted

RIN 6.3.1 How has the abundance, composition, and

distribution of the OHWZ community changed since dam closure (1963), high flows (1984), interim flows (1991), and the implementation of Record of Decision operations (1996)?

RIN 6.3.2 What dam operations (Category A), or other

or establish the community at a lower stage elevation?

management actions (Category B), have the potential to maintain the OHWZ community at the current stage elevation,

ACHIO memo to TWG

5.5

5

Δ____

A or B

Page 23

Formatted

Formatted

Formatted

A M.O. 6.4 Maintain sand	Effects INs EIN 6.3.1 How do the abundance, composition, and distribution of the OHWZ community change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action? <u>beach community abundance, composition, and distribution in</u> system at the target level.	Formatted Formatted
<u>Category</u>	Core Monitoring INs	Formatted
• <u>A</u>	CMIN 6.4.1 Determine and track composition, abundance, and distribution of the sand beach community as measured at 5-year or other appropriate intervals based on life cycles of the species and rates of change for the community.	
Sequence		Formatted
<u>Order</u> <u>Category</u> <u>4</u> <u>A</u>	Research INs RIN 6.4.1 How has the abundance, composition, and distribution of the sand beach community changed since dam closure (1963), high flows (1984), interim flows (1991), and the implementation of Record of Decision operations (1996)?	Formatted
Category	Effects INs	Formatted
AA	EIN 6.4.1 How does the abundance, composition, and distribution of the sand beach community change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	Formatted
M.O. 6.5 Reduce invasi	ve non-native species abundance and distribution.	
Category	Core Monitoring INs	Formatted
A	CMIN 6.5.1 Determine and track the distribution and	Formatted
•	abundance of non-native species in the Colorado River ecosystem as measured at 5-year or other appropriate intervals based on life cycles of the species and rates of change for the	

			based on life cycles of the species and rates of change for the community.	
	Sequence			 Formatted
	<u>Order</u>	Category	Research INs	
	4.5	А	RIN 6.5.1 Determine if non-native species are expanding or	 Formatted
1	•		contracting at a local scale (patch or reach).	
	5	A or B	RIN 6.5.2 What dam operations (Category A), or other	 Formatted
	×		management actions (Category B), have the potential to	 Formatted
			increase or decrease the distribution and abundance of non- native species?	

4	А	RIN 6.5.3 How has the abundance and distribution of non-	Formatted
•		native species changed since dam closure (1963), high flows (1984), interim flows (1991) and the implementation of Record of Decision operations (1996)?	
.	Category	Effects INs	Formatted
	Δ	EIN 6.5.1 How does the abundance and distribution of non- native species change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	Formatted
I.O. 6.6 Ma	intain seep	and spring habitat in the Colorado River ecosystem.	
.	Category	Core Monitoring INs	Formatted
۸	<u>A</u>	CMIN 6.6.1 Determine and track the composition, abundance, and distribution of seep and spring communities as measured at 5-year or other appropriate intervals based on life cycles of the species and rates of change for the community.	Formatted
Sequence			Formatted
<u>Order</u>	Category	Research INs	Formatted
9	<u> </u>	RIN 6.6.1 How is seep and spring habitat affected by variation in dam operations, variation in seep or spring flow, and variation in water quality? How do flow rates and water quality parameters at seeps and springs compare with historic measurements?	
5	<u>A</u>	RIN 6.6.2 Which seeps and springs are culturally important or occupied by rare and endemic species?	Formatted
8.5	<u>A</u>	RIN 6.6.3 How has the composition, abundance and distribution of seep and spring communities changed since dam closure (1963), high flows (1984), interim flows (1991) and the implementation of Record of Decision operations (1996)?	Formatted
9	<u>A</u>	RIN 6.6.4 What is the distribution, patch size, total area, and composition of seep and spring communities and the flow rate and water quality of all seeps and springs within the Colorado River ecosystem?	Formatted
.	Category	Effects INs	Formatted
.	<u>A</u>	EIN 6.6.1 How do the composition, abundance, and distribution of seep and spring communities change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	Formatted

M.O. 6.7 Maintain riparian habitat in the Colorado River ecosystem capable of supporting Southwest willow flycatcher.

	<u>Categor</u>	Core Monitoring INs		Formatted
·	<u>A</u>	CMIN 6.7.1 Determine and track the abundance, distribution, and reproductive success of southwestern willow flycatcher in the Colorado River ecosystem?		Formatted
<u>Sequenc</u> <u>e Order</u>	<u>Categor</u> v	Research INs		Formatted
8	<u>A</u>	RIN 6.7.1 What is the function of the Colorado River ecosystem as a migratory corridor for southwestern willow flycatcher?		Formatted
8	<u>A</u>	RIN 6.7.2 What is the foodbase that supports southwestern willow flycatcher and other terrestrial vertebrates?		Formatted
8	Accomp -lished	RIN 6.7.3 What constitutes suitable southwestern willow flycatcher habitat?		Formatted Formatted
9	<u>A</u>	RIN 6.7.4 How has the abundance, distribution and reproductive success of southwestern willow flycatcher changed since dam closure (1963), high flows (1984), interim flows (1991) and the implementation of Record of Decision operations (1996)?	- 	Formatted
5.5	<u>A</u>	RIN 6.7.5 What is the need, feasibility, and priority of maintaining habitat suitability for southwestern willow flycatcher in the Colorado River ecosystem?		Formatted
.	<u>Categor</u> v	Effects INs		Formatted
.	<u>A</u>	EIN 6.7.1 How do the abundance, distribution and reproductive success of southwestern willow flycatcher change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?		Formatted

ACHIO memo to TWG

Goal 7. Establish water temperature, quality and flow dynamics to achieve GCDAMP ecosystem goals.

M.O. 7.1 Attain water temperature ranges and seasonal variability in the mainstem necessary to maintain or attain desired levels of desirable biological resources (e.g., native fish, foodbase and trout).

<u>Category</u>	Core Monitoring INs	Formatted
• <u>A</u>	CMIN 7.1.1 Determine the water temperature dynamics in the mainstem, tributaries (as appropriate), backwaters, and near-shore areas throughout the Colorado River ecosystem.	Formatted
Δ <u>Α</u>	CMIN 7.1.2 Determine and track LCR discharge near mouth (below springs).	Formatted
equence	(Formatted
Order Category	Research INs	
<u>5 A</u>	RIN 7.1.1 What are the desired ranges of spatial and temporal patterns of water temperatures for the Colorado River ecosystem?	Formatted
<u>4</u> A	RIN 7.1.2 What are the most likely downstream temperature responses to a variety of scenarios involving a TCD on Glen Canyon Dam?	Formatted
<u>3</u> A	RIN 7.1.3 What are the potential ecological effects of increasing mainstem water temperatures?	Formatted
Category	Effects INs	Formatted
A <u>A</u>	EIN 7.1.1 How does water temperature change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	Formatted
O. 7.2 Maintain water	quality in the mainstem of the Colorado River ecosystem.	

	.	<u>Category</u>	Core Monitoring INs		Formatted
		A	CMIN 7.2.1 Determine the seasonal and yearly trends in	1	Formatted
•			turbidity, water temperature, conductivity, DO, and pH, (decide below whether selenium is important) changes in the mainstem throughout the Colorado River ecosystem?		
	Sequence			1	Formatted
	<u>Order</u>	Category	Research INs		
	5	<u>A</u>	RIN 7.2.1 Which major ions should be measured? Where and how often?	1	Formatted
	5	<u> </u>	RIN 7.2.2 Which nutrients should be measured? Where and how often?		Formatted

ACHIO memo to TWG

4	<u>A</u>	RIN 7.2.3 Which metals should be measured? Where and how often?	Formatted
6.5	<u>A</u>	RIN 7.2.4 What are the water-borne pathogens that are a threat to human health? How should they be monitored? Where and how often?	Formatted
Sequence			Formatted
<u>Order</u>	Category	Supporting INs	Formatted
5	<u> </u>	SIN 7.2.1 How do the hydrodynamics and stratification of Lake Powell influence the food base or fisheries downstream?	
4.5	<u> </u>	SIN 7.2.2 Which water quality variables influence food base and fisheries in the Colorado River ecosystem?	Formatted
		3 Maintain suitable quality of water in Glen Canyon Dam stream management objectives.	
.	Category	Core Monitoring INs	Formatted
۸	<u> </u>	CMIN 7.3.1 What are the status and trends of water quality releases from Glen Canyon Dam?	Formatted
Sequence			Formatted
<u>Order</u>	Category		Formatted
5	<u>A</u>	RIN 7.3.1 Develop simulation models for Lake Powell and the Colorado River to predict water quality conditions under various operating scenarios, supplant monitoring efforts, and elucidate understanding of the effects of dam operations, climate, and basin hydrology on Colorado River water quality.	
7.5	А	7.3.1.a Determine the status and trends of chemical and	Formatted
•		biological components of water quality in Lake Powell as a function of regional hydrologic conditions and their relation to downstream releases.	
11.5	А	7.3.1.b Determine stratification, convective mixing patterns, and	Formatted
·		behavior of advective currents in Lake Powell and their relation to Glen Canyon Dam operations to predict seasonal patterns and trends in downstream releases.	
11	<u> </u>	RIN 7.3.2 How accurately can modeling predict reservoir dynamics and operational scenarios?	Formatted
9	A	RIN 7.3.3 How do dam operations affect reservoir limnology?	Formatted
Sequence			Formatted
<u>Order</u>	Category	Supporting INs	Formatted
6	<u>A</u>	SIN 7.3.1 Measure appropriate water quality parameters to determine the influence of these parameters on biological resources in the Colorado River ecosystem.	

<u>A</u>	Effects INs EIN 7.3.1 How does the water quality of releases from Glen Canyon Dam change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action? dynamics associated with power plant operations, BHBF and ows.	 Formatted
Category	Core Monitoring INs	 Formatted
• <u>A</u>	CMIN 7.4.1 Determine and track releases from Glen Canyon Dam under all operating conditions.	 Formatted
<u>Α</u> Α	CMIN 7.4.2 Determine and track flow releases from Glen Canyon Dam, particularly related to flow duration, upramp, and downramp conditions.	 Formatted
<u>Sequence</u>	·	 Formatted
Order Category	Research INs	
<u>,11.5 A</u>	RIN 7.4.1 What is the desired range of seasonal and annual flow dynamics associated with powerplant operations, BHBFs, and habitat maintenance flows, or other flows that meet AMP goals and objectives?	 Formatted
<u>5</u> <u>A</u>	RIN 7.4.2 What is the desired pattern of seasonal and annual flow dynamics associated with powerplant operations, BHBFs, HMFs, or other flows to meet AMP Goals and Objectives?	 Formatted
<u>4</u> A	RIN 7.4.3 How do changes in flow volume and rate of change affect food base and energy productivity in the Colorado River ecosystem?	 Formatted
<u>3 A</u>	RIN 7.4.4 How does flow rate and fluctuation affect habitat availability and utilization by fish and other organisms?	 Formatted

Goal 8: Maintain or attain levels of sediment storage within the main channel and along shorelines to achieve GCDAMP ecosystem goals.

Sequence		· • .	Formatted
Order	Category	Information Needs	
4.5	A	IN 8.1 If sediment cannot be preserved in the system using available management actions, what is the feasibility (including technical, legal, economic, and policy issues) of sediment augmentation as a means of achieving this goal?	Formatted
M.O. 8.1 Ma channel belo		<u>ain fine sediment abundance, grain-size, distribution i</u> n the main	
.		Core Monitoring INs	Formatted
_	<u>A</u>	CMIN 8.1.1 Determine and track the biennial fine-sediment,	Formatted
		volume, and grain-size changes below 5,000 cfs stage, by reach.	Formatted
*	<u>A</u>	CMIN 8.1.2 What are the monthly sand and silt/clay -export volumes and grain-size characteristics, by reach, as measured at Lees Ferry, Lower Marble Canyon, Grand Canyon, and Diamond Creek Stations?	Formatted
*	<u>A</u>	CMIN 8.1.3 Track, as appropriate, the monthly sand and silt/clay -input volumes and grain-size characteristics, by reach, as measured or estimated at the Paria and Little Colorado River stations, other major tributaries like Kanab and Havasu creeks, and "lesser" tributaries?	Formatted
<u>Sequence</u>			Formatted
Order 5	Category <u>A</u>	Research INs RIN 8.1.1 What is the longitudinal variability of fine-sediment inputs, by reach?	Formatted
5	<u>A</u>	RIN 8.1.2 What is the temporal variability of fine-sediment inputs, by reach?	Formatted
5	<u>A</u>	RIN 8.1.3 What fine sediment abundance and distribution, by reach, is desirable to support GCDAMP ecosystem goals? [Note: Definition of "desirable" will be derived from targets for other resources and managers goals.]	Formatted
			Formatted
▲		- <u>Effects INs</u>	Formatted
*	<u> </u>	EIN 8.1.1 How do fine sediment abundance, grain-size, and distribution in the main channel below 5,000 cfs change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	

ACHIO memo to TWG

M.O. 8.2 Maintain or attain fine sediment abundance, grain-size, and distribution within channel margins (not eddies) from 5,000 to 25,000 cfs

	A	Category	Core Monitoring IN		Formatted
		Α	CMIN 8.2.1 Track, as appropriate, the biennial sandbar area,	1	Formatted
	•		volume and grain-size changes outside of eddies between 5,000 and 25,000 cfs stage, by reach?	-	
	<u>Sequence</u>				Formatted
	<u>Order</u>	<u>Category</u>	Research IN		
	5	Α	RIN 8.2.1 What fine sediment abundance and distribution, by		Formatted
	•		reach, is desirable to support GCDAMP ecosystem goals? [Note: Definition of "desirable" will be derived from targets for other resources and managers goals.]	-	
		Category	Effects INs	11	Formatted
	•	Ą	EIN 8.2.1 How does fine sediment abundance, grain-size, and	- 	Formatted
	.		distribution within channel margins (not eddies) from 5,000 to 25,000 cfs change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?		Formatted

M.O. 8.3 Maintain or attain fine sediment abundance, grain-size, and distribution, within eddies below 5,000 cfs

1	A	Category	Core Monitoring INs		Formatted
		Α	CMIN 8.3.1 Track, as appropriate, the biennial sandbar area,		Formatted
	•		volume and grain-size changes within eddies below 5,000 cfs stage, by reach?		
	<u>Sequence</u>		,		Formatted
	<u>Order</u>	Category	Research IN		
	5	А	RIN 8.3.1 What fine sediment abundance and distribution, by	11	Formatted
1	•		reach, is desirable to support GCDAMP ecosystem goals? [Note: Definition of "desirable" will be derived from targets for other resources and managers goals.]		
	.	Category	Effects INs		Formatted
		Α	EIN 8.3.1 How does fine sediment abundance, grain-size, and		Formatted
•	•		distribution, within eddies below 5,000 cfs change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?		

ACHIO memo to TWG

M.O. 8.4 Maintain or attain fine sediment abundance, grain-size, and distribution within eddies between 5,000 to 25,000 cfs

A	Category	Core Monitoring IN	 Formatted
▲	<u>A</u>	CMIN 8.4.1 Track, as appropriate, the annual sandbar area, volume and grain-size changes within eddies between 5,000	 Formatted
		and 25,000 cfs stage, by reach?	
<u>Sequence</u>			 Formatted
<u>Order</u>	Category	Research INs	
5	<u>A</u>	RIN 8.4.1 What fine sediment abundance and distribution, by reach, is desirable to support GCDAMP ecosystem goals? [Note: Definition of "desirable" will be derived from targets for other resources and managers goals.]	 Formatted
	Category	Effects INs	 Formatted
<u>ــــ</u>	<u>A</u>	EIN 8.4.1 How does fine sediment abundance, grain-size, and distribution, within eddies between 5,000 to 25,000 cfs change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	 Formatted

M.O. 8.5 Maintain or attain fine sediment abundance, grain-size, and distribution on shorelines between 25,000 cfs and the uppermost effects of maximum dam releases.

	Category	Core Monitoring INs	Formatted
۰	<u>A</u>	CMIN 8.5.1 Track, as appropriate, the biennial sandbar area, volume and grain-size changes above 25,000 cfs stage, by reach?	(Formatted
Sequence			Formatted
<u>Order</u>	Category	Research INs	
4	<u> </u>	RIN 8.5.1 What elements of Record of Decision operations (upramp, downramp, maximum and minimum flow, MLFF, HMF, and BHBF) are most/least critical to conserving new fine- sediment inputs, and stabilizing sediment deposits above the 25,000 cfs stage?	Formatted
5.5	<u>A</u>	RIN 8.5.2 What is the reach-scale variability of fine-sediment storage throughout the main channel?	Formatted
9.5	<u>A</u>	RIN 8.5.3 What is the pre- and post-dam range of grain-size in fine-sediment deposits, by reach?	Formatted
5	<u>A</u>	RIN 8.5.4 What is the significance of aeolian processes in terrestrial sandbar reworking?	{ Formatted
5.5	<u>A</u>	RIN 8.5.5 What are the historic and ongoing longitudinal trends of fine-sediment storage, above 25,000 cfs?	Formatted

ACHIO memo to TWG

5	Δ	RIN 8.5.6 What fine sediment abundance and distribution, by reach, is desirable to support GCDAMP ecosystem goals? [Note: Definition of "desirable" will be derived from targets for other resources and managers goals.]	 Formatted
.	Category	Effects Monitoring INs	 Formatted
.	<u>A</u>	EIN 8.5.1 How does fine sediment abundance, grain-size, and distribution on shorelines between 25,000 cfs and the uppermost effects of maximum dam releases change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	 Formatted
<u>Sequence</u> Order	Category	Supporting INs	 Formatted
9	<u> </u>	SIN 8.5.1 How do sandbar textures influence biological processes?	 Formatted
5	<u>A</u>	SIN 8.5.2 What is the relationship between the fine-sediment budget and turbidity?	 Formatted
4	<u>A</u>	SIN 8.5.3 What is the relationship between turbidity and biological processes?	 Formatted
4.5	<u>A</u>	SIN 8.5.4 What is the role of turbidity and how can it be managed to achieve biological objectives?	 Formatted
5	<u>A</u>	SIN 8.5.5 How can the ongoing fine sediment supply be managed to achieve sustainable habitats?	 Formatted
4	<u>A</u>	SIN 8.5.6 What are the grain-size characteristics of sand bars associated with designated riparian vegetation zones?	 Formatted
5.5	<u>A</u>	SIN 8.5.7 What are the limiting factors that regulate substrate availability and its distribution?	 Formatted
6	<u>A</u>	SIN 8.5.8 What is the total area of different aquatic habitat types (cobble, gravel, sand, talus, etc,) in the Colorado River ecosystem?	 Formatted
6	<u>A</u>	SIN 8.5.9 How are sandbar textures related to cultural site stability?	 Formatted
7.5	<u>A</u>	SIN 8.5.10 How are sandbar textures related to recreational site stability?	 Formatted
abundance,	grain-size a	3.6 Maintain or attain coarse sediment (greater than 2 mm) and distribution throughout the Colorado River Ecosystem DAMP ecosystem goals.	

Category Core Monitoring INs

Formatted

ACHIO memo to TWG

				Δ
-		-	-	_

CMIN 8.6.1 Determine and track the change in coarse sediment abundance and distribution.

Formatted

ACHIO memo to TWG

	<u>Sequence</u> <u>Order</u>	Category	Research INs	- {	Formatted
	6.5	<u>A</u>	RIN 8.6.1 How do ongoing inputs of coarse-sediment from tributaries influence storage of fine sediment within pools, runs and eddies throughout the Colorado River ecosystem?	1	Formatted
	4.5	<u>A</u>	RIN 8.6.2 How do ongoing inputs of coarse-sediment from tributaries alter the distribution of main channel habitats needed by benthic organisms within pools, runs, and eddies throughout the Colorado River ecosystem?	(Formatted
	.	Category	Effects INs	1	Formatted
	د	<u>A</u>	EIN 8.6.1 How does coarse sediment (greater than 2mm) abundance, grain-size and distribution change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	1	Formatted

GOAL 9: Maintain or improve the quality of recreational experiences for users of the Colorado River ecosystem, within the framework of GCDAMP ecosystem goals.

MO 9.1 Maintain or improve the quality and range of recreational opportunities in Glen

	Category	Core Monitoring INs	Formatted
	<u>A</u>	CMIN 9.1.1 Determine and track the change in recreational	Formatted
		quality, opportunities and use, impacts, and perceptions of users in the Colorado River Ecosystem.	
.	<u>A</u>	CMIN 9.1.2 Determine and track the frequency and scheduling of river-related use patterns.	Formatted
	Α	CMIN 9.1.3 Determine and track the level of satisfaction for	Formatted
•		river-related recreational opportunities in the Colorado River ecosystem.	
	Α	CMIN 9.1.4 Determine and track the economic benefits of river	Formatted
		related recreational opportunities.	
quence	0.1	Describ Nie	Formatted
<u>)rder</u>	Category	Research INs	
11	<u>A</u>	RIN 9.1.1 What are the attributes of a quality river experience? (How do you define a quality river experience?)	Formatted
11	<u>A</u>	RIN 9.1.2 Determine the appropriate carrying capacity for recreational activities within the Colorado River ecosystem.	Formatted
.11	А	RIN 9.1.3 How do ongoing inputs of coarse-sediment from	Formatted
A '-'	<u></u>	tributaries diminish or enhance navigability of rapids throughout the Colorado River ecosystem?	
	Category	Effects INs	Formatted
•	A	EIN 9.1.1 How do recreational use trends, impacts, and	Formatted
•		perceptions change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?	-

MO 9.2 Maintain or improve the quality and range of opportunities in Glen and Grand Canyons in consideration of visitor safety, and the inherent risk of river-related recreational activities.

Category	Core Monitoring INs	 Formatted
<u>A</u>	CMIN 9.2.1 Determine and track the change in quality and _ range of opportunities in consideration of visitor safety, and the inherent risk of river-related recreational activities.	 Formatted

ACHIO memo to TWG

A	CMIN 9.2.2 Determine and track accident rates for visitors participating in river-related activities including causes and
	location (i.e. on-river_or_off-river), equipment type, operator
	experience, and other factors of these accidents in the Colorado River ecosystem.

M.O. 9.3 Increase the size, quality and distribution of camping beaches in critical and non-critical reaches in the mainstem within the capacity of the Colorado River Ecosystem to absorb visitor impacts consistent with NPS and tribal river corridor Management Plans.

_	Category	Core Monitoring INs	{	Formatted
A	<u>A</u>	CMIN 9.3.1 Determine and track the size, quality, and distribution of camping beaches by reach and stage level in Glen and Grand Canyons.	{	Formatted
▲	<u>A</u>	CMIN 9.3.2 Determine and track the effects Record of Decision	1	Formatted
		operations on the size, quality, and distribution of camping beaches in the Colorado River ecosystem.		
Sequence			[Formatted
Order	Category	Research INs		
5	А	RIN 9.3.1 What is the desired target level of camping beaches	1	Formatted
2		by reach?		
	Category	Effects INs	1	Formatted
	А	EIN 9.3.1 How do the size, quality, and distribution of camping	1	Formatted
A	¤	beaches change in response to an experiment performed under the Record of Decision, unanticipated event, or other management action?		
<u>M.O. 9.4 M</u>	aintain or e	nhance the wilderness experience in the Colorado River		

ecosystem in consideration of existing management plans.

·	Category	Core Monitoring INs	+	Formatted
	Α	CMIN 9.4.1 Determine and track the effects of Record of		Formatted
		Decision operations on elements of wilderness experience specific to the Colorado River ecosystem.		
Sequence				Formatted
<u>Order</u>	Category	Research INs		
5.5	<u>A</u>	RIN 9.4.1 Identify the elements of wilderness experience specific to the Colorado River ecosystem.		Formatted

M.O. 9.5 Maintain or enhance visitor experiences as a result of GCDAMP research and monitoring activities.

ACHIO memo to TWG

Category	Core Monitoring INs	Formatted
A	CMIN 9.5.1 Determine and track the frequency and scheduling	Formatted
<u>A</u>	CMIN 9.5.1 Determine and track the frequency and scheduling of research and monitoring activity in Glen and Grand Canyons.	Formatted

<u>Sequence</u>				Formatted
<u>Order</u>	Category	Research INs	-	
7	<u>A</u>	RIN 9.5.1 What effects do administrative trips, including		Formatted
		research and monitoring activities have on recreational users?		

Goal 10: Maintain power production capacity and energy generation, and increase where feasible and advisable, within the framework of GCDAMP ecosystem goals.

 A IN 10.1 Determine and track the impacts to power users from implementation of Record of Decision dam operations and segregate those effects from other causes such as changes in the power market. M.O. 10.1 Maintain or increase power with respect to marketable capacity and energy at Glen Canyon Dam. Category Core Monitoring INs A CMIN 10.1.1 Determine and track the effects on marketable capacity and energy of implementation of Record of Decision components (daily fluctuation limit, upramp and downramp limits, list components, maximum flow limit of 25,000 cfs, minimum flow limit of 5,000 cfs). Sequence Order Category Research INS 	
A IN 10.1 Determine and track the impacts to power users from implementation of Record of Decision dam operations and segregate those effects from other causes such as changes in the power market. M.O. 10.1 Maintain or increase power with respect to marketable capacity and energy at Glen Canyon Dam.	
Glen Canyon Dam. Category Core Monitoring INs A CMIN 10.1.1 Determine and track the effects on marketable capacity and energy of implementation of Record of Decision components (daily fluctuation limit, upramp and downramp limits, list components, maximum flow limit of 25,000 cfs, minimum flow limit of 5,000 cfs). Sequence For Order Category Research INs 6 A RIN 10.1.1. What would be the effects on the Colorado River For	rmatted
A CMIN 10.1.1 Determine and track the effects on marketable capacity and energy of implementation of Record of Decision components (daily fluctuation limit, upramp and downramp limits, list components, maximum flow limit of 25,000 cfs, minimum flow limit of 5,000 cfs). Formation Sequence Order Category Research INs 6 A RIN 10.1.1. What would be the effects on the Colorado River Formation	
A CMIN 10.1.1 Determine and track the effects on marketable capacity and energy of implementation of Record of Decision components (daily fluctuation limit, upramp and downramp limits, list components, maximum flow limit of 25,000 cfs, minimum flow limit of 5,000 cfs). Sequence Order Category Research INs 6 A RIN 10.1.1. What would be the effects on the Colorado River	rmatted
Order Category Research INs 6 A RIN 10.1.1. What would be the effects on the Colorado River	rmatted
6 A RIN 10.1.1. What would be the effects on the Colorado River	rmatted
6 <u>A</u> RIN 10.1.1. What would be the effects on the Colorado River	rmatted
the daily fluctuation limit?	
5 A RIN 10.1.2. What would be the effects on the Colorado River ecosystem and marketable capacity and energy of increasing the upramp and downramp limit?	rmatted
5 A RIN 10.1.3 What would be the effects on the Colorado River ecosystem and marketable capacity and energy of raising the maximum power plant flow limit above 25,000 cfs?	rmatted
5.5 A RIN 10.1.4 What would be the effects on the Colorado River ecosystem and marketable capacity and energy of lowering the minimum flow limit below 5,000 cfs?	rmatted
11.5 <u>A</u> RIN 10.1.5 How do power-marketing contract provisions affect Glen Canyon Dam releases?	matted

M.O. 10.2 Maintain or increase power within the existing emergency criteria for Western Area Power Administration systems.

ACHIO memo to TWG

Category Core Monitoring INs

CMIN 10.2.1 Determine the effects of reserve group obligations on power. Formatted

M.O. 10.3 Maintain or increase power within the existing emergency criteria for the western interconnected electrical system.

L	<u>Category</u>	Core Monitoring INs	{	Formatted
	<u>A</u>	CMIN 10.3.1 Determine the full range of effects of Glen Canyon	{	Formatted
		Dam responses to western interconnected electrical system		
Sequence		emergencies.		Formatted
Order	Category	Research INs	(
5	Α	RIN 10.3.1 What are the effects of providing financial exception	1	Formatted
• • • • • • • • • • • • • • • • • • • •		criteria?		

M.O. 10.4 Maintain or increase power regulation at Glen Canyon Dam.

_	Category	Core Monitoring INs	 Formatted
	A	CMIN 10.4.1 Determine and track the effects on the Colorado	 Formatted
•		River ecosystem and marketable power and energy of maintaining Automatic Generation Control at Glen Canyon Dam.	
Sequence			 Formatted
<u>Order</u>	Category	Research INs	
6	<u>A</u>	RIN 10.4.1 What are the effects on the Colorado River	 Formatted
		ecosystem and marketable power and energy of increasing Automatic Generation Control at Glen Canyon Dam?	

ACHIO memo to TWG

Goal 11: Preserve, protect, manage and treat cultural resources for the inspiration and benefit of past, present and future generations.

M.O. 11.1 Preserve historic properties in the area of potential effect via protection, management, and/or treatment (e.g., data recovery) for the purpose of federal agency compliance with NHPA, and AMP compliance with GCPA.

.	<u>Category</u>	Core Monitoring INs	Formatted
A	<u> </u>	CMIN 11.1.1 Determine the status of historic properties under Record of Decision operations.	- { Formatted
.	<u>A</u>	11.1.1a Determine periodically whether the essential physical features are visible enough to convey their significance or retain their information potential.	Formatted
.	<u>A</u>	CMIN 11.1.2 Determine the efficacy of treatments for mitigation of adverse effects to historic properties.	
.	<u>A</u>	CMIN 11.1.3 What are the thresholds for impacts that threaten their integrity and eligibility of historic properties?	Formatted
.	<u>A</u>	11.1.3a Are the current monitoring programs collecting the necessary information to assess resource integrity?	
^	<u>A</u>	CMIN 11.1.4 How effective is monitoring, what are the appropriate strategies to capture change at an archaeological site - qualitative, quantitative?	
Sequence Order	Category	Research INs	Formatted
<u>4</u>	<u>A</u>	RIN 11.1.1 What are the sources of impacts to historic properties?	Formatted
5	<u>A</u>	11.1.a What and where are the geomorphic processes that link loss of site integrity with dam operations as opposed to dam existence or natural processes?	Formatted
5	<u>A</u>	11.1.1.b What are the terrace formation processes and how do dam operations affect current terrace formations processes?	{ Formatted
5	<u>A</u>	11.1.1.c Determine if and where dam operations cause accelerated erosion to historic properties?	Formatted
5	<u>A</u>	11.1.1.d What are the potential threats to historic properties relative to integrity and significance?	Formatted
3.5	<u>A</u>	RIN 11.1.2 What are the historic properties within the area of potential effects?	Formatted
3.5	<u>A</u>	11.1.2.a For each tribe and living community, what are the register eligible traditional cultural properties?	Formatted

ACHIO memo to TWG

5	А	11.1.2.b How do specific sites meet National Register Criteria	 Formatted
A ⁻		for Evaluation?	
5	<u>A</u>	11.1.2.c Identify AMP activities that affect National Register eligible sites?	 Formatted
5.5	<u>A</u>	11.1.2.d Identify NPS permitted activities that affect National Register eligible sites.	 Formatted
3	<u>A</u>	RIN 11.1.3 What are the thresholds triggering management actions?	 Formatted
5	<u>A</u>	11.1.3.a Determine the necessary information to assess resource integrity.	 Formatted
4	<u>A</u>	11.1.3.b How should adverse effects to historic properties be mitigated?	 Formatted
5.5	<u>A</u>	RIN 11.1.5 What are appropriate strategies to preserve resource integrity?	 Formatted
.	Category	Effects Monitoring INs	 Formatted
A	<u>A</u>	EIN 11.1.1 Determine the effects of experimental flows on historic properties.	 Formatted

M.O. 11.2 Preserve resource integrity and cultural values of traditionally important resources within the Colorado River Ecosystem.

	Category	Core Monitoring INs		Formatted
	Α	CMIN 11.2.1 Are the traditionally important resources and	1	Formatted
•		locations for each tribe and other groups being affected?		
Sequence				Formatted
<u>Order</u>	Category	Research INs		
4.5	А	RIN 11.2.1 What are traditionally important resources and		Formatted
A		locations for each tribe and other groups?		
4.5	<u>A</u>	RIN 11.2.2 What is the baseline measure for resource integrity?		Formatted
4	А	RIN 11.2.3 Determine acceptable methods to preserve or treat		Formatted
· • • • • • • • • • • • • • • • • • • •	<u>0</u>	traditionally important resources within the Colorado River ecosystem.		
5	<u>A</u>	RIN 11.2.4 What changes are occurring in cultural resource	1	Formatted
		sites, and what are the causes of those changes?		

M.O. 11.3 Protect and maintain physical access to traditional cultural resources through meaningful consultation on AMP activities that might restrict or block physical access by Native American religious and traditional practitioners.

ACHIO memo to TWG

1	Sequence			- {	Formatted
	<u>Order</u>	Category	Effects INs		
	9	<u>A</u>	EIN 11.3.1 Determine if and how experimental flows and other AMP actions restrict tribal access.	- {	Formatted
	9	<u>A</u>	EIN 11.3.2 Determine reasonable management actions that should be taken to facilitate tribal access.	- (Formatted

Goal 12: Maintain a high quality monitoring, research, and adaptive management program.

Research and monitoring techniques should be continuously improved to provide the AMP with the best-available science. However, exploration of new techniques and methods may not result in an RFP and should not come at the expense of long term monitoring and resource protection.

<u>There is an ongoing need to consider new information regarding the most cost-</u> <u>effective and least intrusive techniques and methods available for monitoring and</u> <u>conducting research on the resources of the CRE. GCMRC seeks this information as</u> <u>part of its normal operations.</u>

Any research into methodology will occur only as recommended by GCMRC, TWG, PEPs, or Science Advisors and approved by AMWG.

Sequence

Order	<u>Category</u>	Information Needs	Formatted
3	А	IN 12.1 Develop information that can be used by the TWG, in	Formatted
A		collaboration with GCMRC, to establish current and target levels	Formatted
		for all resources within the AMP as called for in the AMP strategic plan.	
	А	IN 12.2 Determine what information is necessary and sufficient	Formatted
^	·····	to make recommendations at an acceptable level of risk.	Formatted

M.O. 12.1 Maintain or attain socio-economic data for adequate decision-making.

Sequence				Formatted
<u>Order</u>	Category	Research INs:		
			11	Deleted: 4.5
	•		<	Formatted
11.5	<u> </u>	RIN 12.1.1 What is the economic value of the recreational use of the Colorado River ecosystem downstream from Glen Canyon Dam?		Deleted: RIN 12.1.1 What is the necessary quantity and quality of cultural and socioeconomic information for adequate decision-
11	<u>A</u>	RIN 12.1.2 , What are the use (e.g., hydropower, trout fishing,		making? Formatted
		rafting) and non-use (e.g., option, vicarious, quasi-option, bequest and existence) values of the Colorado River ecosystem		Deleted: 2
11	٨			Formatted
▲ <u>L</u> L	<u> </u>	RIN 12.1.3 How does use (e.g., hydropower, trout fishing,		Deleted: 3
		rafting) and non-use (e.g., option, vicarious, quasi-option, bequest and existence) values change in response to an		Formatted
experir		experiment performed under the Record of Decision, unanticipated event, or other management action?	``	Deleted: 4

ACHIO memo to TWG

M.O. 12.2: Attain or improve monitoring and research programs to achieve the appropriate scale and sampling design needed to support science-based adaptive management recommendations.

M.O. 12.3 Attain or maintain an integrated and synthesized "ecosystem-science"- based adaptive management program.

Sequence Order Category Research INs 4.5 RIN 12.3.1 As necessary, investigate the most effective А methods to integrate and synthesize resource data. RIN 12.3.2, What are the differences between western science А and tribal processes for design of studies and for gathering, analyzing, and interpreting data used in the adaptive management program? How well do research designs and workplans incorporate Tribal perspectives and values into the standard western science paradigm? Is it more beneficial to keep the perspective separated? **RIN 12.3.3** How effective is the AMP in addressing the EIS 5 Α statement "Long-term monitoring and research are ... implemented to measure how well the selected alternative meets resource management objectives."? M.O. 12.4 Attain or maintain an integrated and synthesized "ecosystem-science"-based

adaptive management program.

Sequence Order

Research INs

M.O. 12.5 Foster effective two-way communication between scientists, external reviewers, managers, decision-makers, and the public.

Category Core Monitoring INs
A CMIN 12.5.1 Determine whether effective two-way communication between AMP participants and individuals
outside the program is occurring on a regular basis.

Deleted: This MO is intended to encourage continuous improvement in research and monitoring techniques to provide the AMP with the best available science. However, exploration of new techniques and methods should not come at the expense of long-term monitoring and resource protection. ¶

Unlike the other Management Objectives, this MO reflects an ongoing need to consider new information regarding the most costeffective and least intrusive techniques and methods available for monitoring and conducting research on the resources of the CRE GCMRC seeks this information as part of its normal operations, using Protocol Evaluation Panels and other means.

Formatted

Deleted: What are the most effective method(s) to integrate and synthesize resource data to increase our understanding of the past and for ongoing interactions of humans with the Colorado River ecosystem.

Formatted

Deleted: 6

Formatted

Deleted: RIN 12.3.2 What are the differences between western science and tribal processes for design of studies and for gathering, analyzing, and interpreting data used in the adaptive management program? Deleted: 1

Formatted

Deleted: RIN 12.3.3 What are the best scientific methods to determine cause and effect relationships in experiments and other management actions conducted under the GCDAMP?

Formatted

Deleted: 4

Deleted: do in incorporating

Formatted

Deleted: 5

Deleted: 4.5

Deleted: RIN 12.4.1 What are the most effective methods to maintain or attain the participation of externallyfunded investigators?

Formatted

Formatted

ACHIO memo to TWG

equence			{	Formatted
<u>Order</u>	<u>Category</u>	Research INs		
5	<u> </u>	RIN 12.5.1 What are the most effective means to build AMP public support through effective public outreach?		Formatted
5	<u> </u>	RIN 12.5.2 What are the most effective means to attain and maintain effective communication and coordination with other resource management programs in the Colorado River basin to ensure consideration of their values and perspectives into the AMP and vice versa?	{	Formatted
6	<u>A</u>	RIN 12.5.3 To what extent does the public understand and support the GCDAMP?	{(Formatted
5	<u> </u>	RIN 12.5.4 What is the most effective way to distribute information to our stakeholders and the public in a secure and accessible fashion?	(Formatted
4.5	<u>A</u>	RIN 12.5.5 Identify the desired level of information, education, and outreach provided for Glen and Grand Canyon river users and the general public?	{(Formatted

M.O. 12.6 Attain and maintain an effective adaptive management program, composed of informed stakeholders.

M.O. 12.6a Maintain or attain funding from multiple sources.

ACHIO memo to TWG

M.O. 12.7 Attain and maintain effective tribal consultation to ensure inclusion of tribal values and perspectives into the AMP.

Sequence	Formatted
Order Category Research INs:	
5 A RIN 12.7.1 How effective are the current st	rategies to achieve
tribal consultation?	
5 <u>A</u> RIN 12.7.2 How well do the current strategic consultation meet legal and AMP protocols	

M.O. 12.8 Attain and maintain tribal participation in the AMP research and long-term monitoring activities.

Sequence			 Formatted
<u>Order</u>	Category	Research INs	
5	B,	RIN 12.8.1 How well does current tribal participation in the AMP	 Formatted
		research and long-term monitoring programs meet tribal needs and desires?	 Formatted

M.O. 12.9 Recommend experiments of dam operations and other management actions to gain critical understanding of ecosystem function under different dam operations scenarios and other management actions.

1	Sequence			 Formatted
	Order	Category	Research INs	
	3	Α	RIN 12.9.1 What is the impact on downstream resources of	 Formatted
•	•		short-term increases to maximum flow, daily fluctuations, and downramp limits?	
	2	<u>A</u>	RIN 12.9.2 What is the best combination of dam operations and	 Formatted
			other management actions to achieve the vision, mission, goals, and objectives of the GCDAMP?	
	2	<u>A</u>	RIN 12.9.3 What are the relationships between dam operations and other management actions in their effects on resources addressed by GCDAMP management objectives?	 Formatted

M.O. 12.10 Maintain or attain adequate funding from power revenues, foundations and corporations, appropriations, and State agencies to meet AMP goals.

ACHIO memo to TWG

M.O. 12.11 Maintain or attain participation from externally funded investigators that can help address the information needs and meet AMP goals.

Sequenc			 Formatted
<u>e</u>	<u>Categor</u>		 Formatted
<u>Order</u>	¥	Research IN	
<u>4.5</u>	A	RIN 12.11.1 What are the most effective methods to maintain or	 Formatted
		attain the participation of externally-funded investigators?	

ACHIO memo to TWG

Appendix 1 Process for Developing the Information Needs

The INs have been developed thorough a collaborative process led by the Grand Canyon Monitoring and Research Center (GCMRC). This process was initiated with GCMRC developing a draft set of INs for review and comment at a meeting of the Technical Work Group (TWG) and principal investigators held at the Phoenix Airport on April 3, 2001. A second meeting to discuss cultural INs was held in Flagstaff on May 8, 2001. Following these meetings, GCMRC revised the INs and discussed them at the May TWG meeting. Following this meeting the INs were put in a table and electronically mailed to the TWG for additional comment. Very few comments were provided by the TWG. At this point, the INs and the process for developing the INs was discussed in a number of conference calls and it was agreed that the INs would be reformatted into the nested outline form used in the current document. It was also agreed that the reformatted INs would be mailed to the TWG for revising the INs would be held at GCMRC on August 8-9, 2001.

This current document results from the work conducted at the August 8-9, 2001 INs workshop and the subsequent review at the September 6 TWG meeting. On the first day of the August 8-9 INs workshop the TWG, PIs, and GCMRC staff divided into 4 concurrent breakout groups and reviewed the draft INs. Each group addressed the following questions during their review:

- Do the INs for a given MO provide the information that is needed to address that MO? If not, please indicate how they should be revised and what should be added or deleted.
- 2) Are the INs written at the appropriate level of detail and correctly categorized with respect to the categories of "core monitoring," "effects monitoring," and "research"?
- 3) Taken together as a set do the INs and MOs represent the information needed to address a given goal?

On the second day of the August 8-9 INs workshop, a representative of each breakout group presented their proposed changes to the group as a whole. In response to these comments, the INs were either modified or the comments were captured in a table for subsequent consideration. The revised draft and the comments table were e-mailed to the TWG on August 20 for review prior to the September 6-7, TWG meeting. The National Park Service, Colorado River Energy Distributors Association, and Western Area Power Administration provided written comments on the INs. The INs were subsequently reviewed and revised at the September 6, 2001 TWG meeting.

A revised Draft INs document was e-mailed by GCMRC to the TWG on Friday September 14, 2001. Recommendations for deleting INs, for specific language

ACHIO memo to TWG

changes to the existing INs, or specific language for adding new INs were provided by TWG members to GCMRC by October 5, 2001. These were collated into a comments table, organized sequentially beginning with comments on the first IN, and sent back to the TWG on October 12 for review prior to an October 22-23 ad-hoc TWG workshop to revise the INs. At the October 22-23 TWG workshop, the first day was spent discussing overarching concerns relating to the scope of the AMP as expressed in the Goals and Management Objectives and concerns over the definitions used in the document. Only the INs for Goal 11, Cultural Resources were addressed. It was also agreed that a small group would work on revising the definitions and would send them to GCMRC. The definitions agreed to by the small group are included in this document. On the second day, INs for Goals 7, 8, 9, and 10 were addressed.

GCMRC has taken all of the comments included in the October 12th table and added changes agreed to at the October 22nd meeting to forge a November 2nd Draft of the Information Needs. The November 2nd Draft was sent to the TWG for review at the November 13-14 TWG meeting. Limited detailed review occurred at the November 13-14 meeting with the majority of the time being spent on over arching issues. As a result, TWG members were asked to submit their comments to GCMRC by close of business November 16th. Another draft, dated November 2nd draft was mailed to the TWG for review on November 26th. The TWG was asked to provide GCMRC with their final comments by December 7th. This FINAL DRAFT incorporates comments received by GCMRC as of December 7th.

ACHIO memo to TWG