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History and Physical Significance of the Roughness Froude Number 

ABSTRACT 

The roughness Froude number is a relatively new dimensionless parameter that began appearing in the 

hydraulic engineering literature in the late 1970s, first for the analysis of aeration inception in smooth 

chutes, and then later in connection with stepped chutes.  This article reviews its foundations, historical 

development, alternative forms, present-day applications, and physical significance, which has received 

little attention previously.  In addition to its empirically demonstrated connection to aeration inception, 

this paper shows that one form of a roughness Froude number has a strong relation to the transition 

between nappe and skimming flow regimes of stepped chutes, while another combines the 

dimensionless flow friction factor and the relative submergence of roughness elements. 

Keywords: Aerated flow; aeration inception; boundary layer; nappe flow; roughness Froude 

number; skimming flow; stepped chutes. 

1 Introduction 

Several dimensionless groupings of variables described as roughness Froude numbers are 

used today to analyze aeration associated with steady-state flows in both smooth and stepped 

chutes (e.g., Chanson 1994a, 1994b, 2002; Boes & Hager 2003a, 2003b; Hunt et al. 2014).  

They arose from several related parameter groups that appeared in the hydraulic engineering 

literature in the late 1970s and early 1980s (Keller & Rastogi 1977; Cain & Wood 1981; 

Wood et al. 1983).  The roughness Froude number has been related to the inception point of 

aerated flow, and its predecessor, the inception Froude number, is based on the depth and 

velocity of flow at the inception point, quantities that serve as reference values for defining 

the aerated flow conditions in the downstream developing aerated flow zone.  The most 

common form, which appeared first in Cain and Wood (1981), is: 

 F* = 𝑞𝑞

�𝑔𝑔 sin(𝜃𝜃)𝑘𝑘𝑠𝑠3
 (1) 

where F* is the roughness Froude number, q is discharge per unit width, g is acceleration due 

to gravity, sin(θ) is slope, θ is chute slope angle, and ks is a reference length serving as a 

measure of surface roughness (e.g., sand grain roughness, or a roughness dimension related to 

step height). 

The location of air entrainment inception for both smooth and stepped chutes has 

been empirically related to F* for a wide range of slope and roughness conditions (e.g., Cain 

& Wood 1981; Chanson 1994b; Boes & Hager 2003a; Hunt & Kadavy 2013).  The initiation 

of air entrainment is widely recognized to involve inertia, gravitational forces, surface 
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tension, turbulence, and characteristics of the boundary layers developed along the chute floor 

and in the water and air layers adjacent to the air-water interface (e.g., Valero & Bung 2016).  

The F* parameter incorporates many of these factors, although surface tension is notably 

lacking and nothing in the parameter relates to the air layer above the water surface.  These 

factors may have limited variation or significance for prototype scale flows or appropriately 

sized laboratory studies (Pfister & Chanson 2014), allowing F* to adequately represent the 

dimensionless combination of the practically important variables for steep chutes, where 

turbulence intensity is almost always high enough to initiate self-aeration once the turbulent 

boundary layer begins to interact with the free surface. 
Several variations of the roughness Froude number have been used to characterize the 

flow in stepped chutes (Fig. 1), with the reference length being either the depth of the step 

cavity perpendicular to the pseudobottom (the line connecting the step tips), ks = h∙cos(θ), or 

the vertical step height, h.  Regardless of the details, when described as roughness Froude 

numbers the dimensionless groupings have typically included the unit discharge, gravity and 

slope terms, and a reference length term related to the size of the roughness elements 

affecting the flow.  Terrier (2016) noted variations using either h∙cos(θ) or h as reference 

lengths and sin(θ) or tan(θ) slope terms in the denominator. 

Since these dimensionless quantities are described as Froude numbers, it is useful to 

recall the traditional definition for the Froude number of an open-channel flow in a 

rectangular channel: 

 F = 𝑉𝑉
�𝑔𝑔𝑔𝑔

= 𝑞𝑞/𝑔𝑔
�𝑔𝑔𝑔𝑔

= 𝑞𝑞
�𝑔𝑔𝑔𝑔3

 (2) 

where V is the flow velocity and D is the flow depth.  This Froude number represents the ratio 

of inertial and gravitational forces (strictly speaking, the square root of that ratio).  For steep 

slopes, Chow (1959) provided a modified form: 

 F = 𝑉𝑉
�𝑔𝑔𝑔𝑔∙cos𝜃𝜃

= 𝑞𝑞
�𝑔𝑔𝑔𝑔3∙cos𝜃𝜃 (3) 

with D∙cos(θ) representing the piezometric head associated with depth D measured normal to 

the channel boundary.  Comparing Eqs. (1) and (3), the general form and dimensional 

similarity of the flow and roughness Froude numbers is evident.  Differences between them 

are the use of a reference length related to the roughness element size instead of the flow 

depth and the use of sin(θ) rather than cos(θ). 
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2 Emergence and evolution of the roughness Froude number 

2.1 The boundary layer and aerated flow in smooth chutes  

The streamwise development of aerated flow in spillways and other smooth- and rough-

bottom chutes is a dramatic visual phenomenon that has long held the interest of hydraulic 

engineers, with profound effects on flow energy, depth, frictional resistance, and water 

quality (Fig. 2).  Lane (1939) was first to make a suggestion that the inception of aerated flow 

and the appearance of whitewater in steep spillway chutes occurs when the boundary layer 

created by friction at the bed grows in thickness to the point where it intersects the free water 

surface.  Boundary layer growth and its relation to the inception point was subsequently 

studied by several researchers, including Bauer (1954), Halbronn (1954), Campbell et al. 

(1965), Cassidy (1966), Bauer (1966), and Gangadharaiah et al. (1970).  Other mechanisms 

may also be at work in some cases, such as growth of longitudinal vortices (Levi 1967) and 

interaction between the flowing water at the surface and the air flow induced above the water 

surface (Valero & Bung 2016).  Valero and Bung (2016) summarize experimental evidence 

suggesting that the inception point commonly occurs before the computed intersection of the 

boundary layer and the water surface, i.., when the ratio of the boundary layer thickness to the 

flow depth is about 0.8.   

Straub and Anderson (1958) and Killen (1968) performed foundational laboratory 

studies of aerated flow, describing the inception of visible aeration at the surface and 

measuring depth-wise profiles of air concentration along the length of chutes as air bubbles 

migrated from the surface toward the bottom in the developing flow downstream from the 

inception point.  Researchers have identified zones of blackwater or clearwater flow (no 

aeration), developing partially aerated flow (air entrained near the water surface, but no air 

yet reaching the bed), developing fully aerated flow (measurable air present within the flow 

from surface to bed), and fully developed aerated flow (time-averaged equilibrium velocity 

and air entrainment conditions not changing with increasing distance down the chute).  

Defining the aeration inception point has long been of interest to spillway designers, and the 

flow conditions at the inception point (velocity and depth) have served as key reference 

quantities for modeling the subsequent developing zones of aerated flow.  Although 

laboratory investigations have provided the bulk of our understanding of aerated flow in 

chutes, scale effects in two-phase air-water flows (Pfister & Chanson 2014) have made 

observations and measurements of aerated flow in full-size spillways especially valuable.  

Important efforts in this area include those of Keller (1972), Cain and Wood (1981) and more 

recently Hohermuth et al. (2021).  These early field studies would underpin the emergence of 

the roughness Froude number 
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Professor Ian Wood and several postgraduate students at the University of Canterbury 

made significant early studies of prototype-scale aerated flows.  The Ph.D. thesis of Robert 

Keller (1972) investigated aeration inception in detail and reported field measurements of 

self-aerated flow from the 45° sloped face of the spillway of New Zealand’s Aviemore Dam.  

The measurements were concentrated in the developing region between the inception point 

and the fully developed aerated zone.  Using dimensional analysis, Keller (1972) developed a 

parameter that he described as an “inception Froude number”: 

 𝑉𝑉𝑖𝑖
�𝑔𝑔𝑔𝑔𝐷𝐷𝑖𝑖

 (4) 

in which Vi and Di are the flow velocity and depth at the point of aeration inception, and 

S = sin(θ) is the channel slope.  With the channel slope term, S = sin(θ), in the denominator, 

Eq. (4) no longer represents the same ratio of inertial and gravitational forces as Eqs. (2) or 

(3).  However, the dimensionless ratio in Eq. (4) can be viewed as the square root of the ratio 

of inertial forces to friction forces at the bed (gSD representing shear at the boundary), which 

is the inverse square root of the flow friction factor.  Such an interpretation was not suggested 

by Keller (1972). 

The slope definition used in Eq. (4) is the same as that used in  Bauer’s (1954) 

boundary layer studies.  It should be noted that this makes the slope equal to the change in 

elevation per unit of distance along the slope, which is the common usage in steep chutes and 

differs from the traditional mathematical definition of slope in Cartesian coordinates as 

vertical change per unit of horizontal run.  With the latter definition, true mathematical slope 

would be tan(θ) rather than sin(θ).  The difference is significant for slopes steeper than about 

5° and more significant with increasing θ. 

Keller (1972) used the data from the MEng thesis of Lai (1971) to determine values 

of the inception Froude number for model chutes over a range of slopes.  Keller, Lai and 

Wood (1974) prepared an article combining these works, and the appendix to that paper 

presented a basic physical argument for the development of the inception Froude number, 

illustrating how S arrived in the denominator.  The Ph.D. thesis of Cain (1978), another 

student of Wood, also used this inception Froude number. 

The inception Froude number as defined above is similar to the traditional flow 

Froude number, Eq. (2), except for the inclusion of the channel slope term in the denominator.  

Keller’s thesis (1972) and the appendix of Keller, Lai and Wood (1974) show that the slope 

term arises from an estimate of the velocity at the inception point being 

 𝑉𝑉𝐼𝐼 ≈ �2𝑔𝑔𝑔𝑔 ∙ 𝑥𝑥𝑖𝑖 (5) 

with xi being the distance along the slope from the start of the chute and the S∙xi term being 

the vertical elevation drop over that distance, which represents the approximate energy head 
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at the inception point, assuming minimal losses.  Note that if the vertical elevation drop had 

been specified directly, not as a function of xi, then S = sin(θ) would have been absent from 

Eq. (5) and from what follows.  Rearranging Eq. (5) to isolate xi produces 

 𝑥𝑥𝑖𝑖 =
𝑉𝑉𝑖𝑖

2

2𝑔𝑔𝑔𝑔
 (6) 

Noting that the Darcy friction factor in a wide, open channel is f = 8gDS/(V)2, the distance xi 

given by Eq. (6) is proportional to the ratio of the flow depth and the friction factor.  Eq. (6) 

can be combined with empirical equations for estimating the boundary layer thickness at the 

inception point (where the flow depth is designated Di).  For a rough-bed case the boundary 

layer thickness δ is a function of the flow distance xi and the equivalent sand-grain roughness 

dimension ϵ (Keller, Lai & Wood 1974; Halbronn 1952, 1954), i.e.: 

 𝐷𝐷𝐼𝐼 = 𝛿𝛿 = 0.0447𝜖𝜖0.154𝑥𝑥𝑖𝑖0.846 = 0.0447𝜖𝜖0.154 � 𝑉𝑉𝑖𝑖
2

2𝑔𝑔𝑔𝑔
�

0.846
 (7) 

After rearranging, S appears in the denominator of a dimensionless ratio that includes Vi and 

Di :  

 𝑉𝑉𝑖𝑖
�𝑔𝑔𝑆𝑆𝑔𝑔𝑖𝑖

= 8.88 �𝐷𝐷𝑖𝑖
𝜖𝜖
�

0.091
 (8) 

 

The quantity on the left side of Eq. (8) is the inception Froude number, Eq. (4).  For a smooth-

bed case, a similar development produces (Keller, Lai & Wood 1974): 

 𝑉𝑉𝐼𝐼
�𝑔𝑔𝑆𝑆𝑔𝑔𝑖𝑖

= 20.65(𝑔𝑔0.0285𝐷𝐷𝑖𝑖
0.087) (9) 

Keller (1972) showed that this modified Froude number in the left side of Eqs. (8) and (9) has 

a nearly constant value of about 15.8 to 16.4 at the point of aeration inception over a range of 

flow rates and at different slopes and roughnesses when considering both his own data and 

those of Lai (1971).  This is consistent with the small values of the exponents in the right-

hand terms of Eqs. (8) and (9).  However, it would have been equally valid to keep S = sin(θ) 

out of the dimensionless ratio (since it contributes no dimensions) and conclude (in both 

rough- and smooth-bed cases since the exponent of S in the right-hand side of the smooth-bed 

equation is nearly zero) that 

 𝑉𝑉𝑖𝑖
�𝑔𝑔𝑔𝑔𝑖𝑖

∝ √𝑔𝑔 = √sin𝜃𝜃 (10) 

or 

 𝑉𝑉𝑖𝑖
�𝑔𝑔𝑔𝑔𝑖𝑖 cos(𝜃𝜃)

= 𝑞𝑞

�𝑔𝑔𝑔𝑔𝑖𝑖
3 cos(𝜃𝜃)

 ∝ �sin𝜃𝜃
cos𝜃𝜃

= √tan 𝜃𝜃 (11) 



 
Information Classification: General 

In the last form, the slope-adjusted Froude number familiar to most hydraulicians is 

proportional to the square root of the mathematical slope.  It should be emphasized that the 

inception Froude number—like the traditional flow Froude number—contains velocity and 

reference lengths related only to the water flow. 

A switch from the flow-related length reference Di in Eq. (11) began with work by 

Keller and Rastogi (1975) that showed agreement between aeration inception and theoretical 

predictions of the intersection of the boundary layer and the water surface, using experimental 

data from a laboratory channel, a full-size overflow spillway, and a full-size gated spillway.  

Subsequently, Keller and Rastogi (1977) provided design curves for predicting the inception 

point and related the inception point through dimensional analysis to the channel slope and 

the dimensionless combination q/(gks
3)1/2.  They did not assign a symbol or a name to this 

dimensionless group, which notably did not include a slope-related term or a reference length 

related to the flow depth.  
The next important step in the development of the roughness Froude number was due 

to Cain and Wood (1981).  Again reporting prototype data from Aviemore spillway, they 

applied the symbol F* to a dimensionless parameter described as a “Froude number based on 

design quantities”: 

 F* =
𝑞𝑞

�𝑔𝑔𝑔𝑔𝑘𝑘𝑠𝑠
3
 (12) 

where S is the slope, sin(θ).  This dimensionless parameter was similar to the parameter 

suggested by Keller and Rastogi (1977), but added the sin(θ) term of the inception Froude 

number.  Unlike the inception Froude number, F* did not represent solely the properties of the 

flow, but instead a combination of flow (q) and chute roughness (ks) properties.  Cain and 

Wood (1981) presented relations for predicting the inception point, inception depth, and 

inception velocity as a function of this new Froude number.  Cain and Wood (1981) did not 

explain what inspired them to use a hybrid parameter, and no derivation justifying the 

placement of S in the denominator was given.  The author speculates that S was included for 

consistency with the form of the inception Froude number developed by Keller, Lai and 

Wood (1974), while the roughness-based length reference apparently followed Keller and 

Rastogi (1977), although Cain and Wood (1981) only cited Keller and Rastogi (1975).  The 

g∙S variable combination was explained to physically represent the component of gravity 

acting parallel to the spillway slope.  This is in contrast to g∙cos(θ) in the traditional slope-

adjusted Froude number of Chow (1959), which represents the component of gravity acting 

perpendicular to the slope and drives the depthwise distribution of pressure within the flow.  

The gravity component parallel to the slope is the force that accelerates and maintains the 

flow, but it is not apparent why this should appear in relations applying to air inception when 
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the normal gravitational component is key for the flow of water.  No investigator has offered 

a derivation of Eq. (12) based on first principles.  However, rearrangement reveals an 

alternate physical interpretation as a quantity proportional to the ratio of the 1.5 power of the 

relative submergence of roughness elements and the square root of the friction factor: 

 F* =
𝑞𝑞

�𝑔𝑔𝑔𝑔𝑘𝑘𝑠𝑠
3

=
𝑉𝑉𝐷𝐷

�𝑔𝑔𝑔𝑔𝑘𝑘𝑠𝑠
3

√𝐷𝐷
√𝐷𝐷

=
𝑉𝑉

√𝑔𝑔𝐷𝐷𝑔𝑔
�𝐷𝐷

𝑘𝑘𝑠𝑠
�

3/2

= �
8

𝑓𝑓
�𝐷𝐷

𝑘𝑘𝑠𝑠
�

3/2

 (13) 

Like Eq. (6), this suggests the strong connection between frictional resistance and boundary 

layer growth leading to air entrainment. 

Wood et al. (1983), citing the previous work by Cain and Wood (1981), used F* again 

as defined in Eq. (12) to predict the inception point in smooth chutes, calling it simply a 

“discharge parameter”.  They also noted the similarity between F* and the dimensionless 

combination q/(gks
3)1/2 suggested by Keller and Rastogi (1977). 

2.2 Stepped chutes and the naming of the roughness Froude number 

Following the burst of research activity on the inception point for smooth spillways in the 

1970s and early 1980s, the F* parameter lay dormant for about a decade.  The 1990s brought 

a period of strong research interest in stepped chutes constructed from conventional concrete, 

masonry, and a relatively new construction material growing rapidly in popularity, roller-

compacted concrete (RCC).  Chanson (1994a), another student of Wood, cited the relations 

from Wood et al. (1983) for predicting the location and flow properties of the aeration 

inception point in stepped channels, calling F* simply “a Froude number”.  In the first of two 

books on stepped chutes, Chanson (1994b) cited both Keller and Rastogi (1977) and Wood et 

al. (1983) and described F* = q/[g sin(θ)ks
3]1/2 as a “Froude number defined in terms of the 

roughness height”.  Subsequent works (e.g., Chanson 2002; Felder & Chanson 2009, 2011, 

2013, 2016) have used similar descriptions while typically citing only Wood et al. (1983) or 

no specific source. 
At an International Workshop on Hydraulics of Stepped Spillways held in Zurich, 

Switzerland, Boes and Minor (2000) and Hager and Boes (2000) described F* as the 

“roughness Froude number”, a condensation of Chanson’s description.  Both papers defined 

F*  using the vertical step height: 

 F* = 𝑞𝑞
�𝑔𝑔 sin(𝜃𝜃)ℎ3

 (14) 

These papers included the slope term in the denominator, following the lead of Cain and 

Wood (1981) and Wood et al. (1983).  Boes and Minor (2000) related F* to the location of the 

inception point and to the bottom air concentration at locations downstream from inception.  
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Hager and Boes (2000) used F* to predict the depth of the aerated flow mixture in the fully 

developed zone.  Following these papers, Boes and Hager (2003a, 2003b) used F* again as 

defined in Eq. (14) in a pair of articles on aerated flow and general hydraulic design of 

stepped spillways.  These have been more readily available than the conference papers from 

the 2000 workshop and have thus been widely cited during the past two decades.  Most 

subsequent works that apply a roughness Froude number to stepped spillways or smooth 

chutes have used the form of either Eq. (14) or Eq. (1) and cited either Boes and Hager 

(2003a; 2003b), Cain and Wood (1981), Wood et al. (1983) or Chanson (1994a, 1994b, 2002) 

as the source of the parameter.  Cheng et al. (2014), studying boundary layers of stepped 

chutes, cited Keller and Rastogi (1977), but included the sin(θ) term in the denominator as 

used in the other references listed above.  The most useful definition for F* has been the form 

shown in Eq. (1), with the length reference set to the step cavity depth normal to the slope 

line, ks = h∙cos(θ).  This form makes the parameter adaptable to modified step shapes, such as 

beveled faces common to RCC overlays used for embankment dam overtopping protection 

(Hunt et al. 2022). 

A handful of recent works have used dimensionless parameters like the roughness 

Froude number, but without a slope term in the denominator [similar to Keller & Rastogi 

(1977)].  Mateos and Elviro (1997) presented data on the initiation of aeration in ten stepped 

spillway models for six Spanish dams with slopes in a narrow range from 51° to 53°.  They 

did not use the roughness Froude number name, but proposed: 

 𝑍𝑍
ℎ

= 5.6 � 𝑞𝑞
�𝑔𝑔ℎ3

�
0.8

 (15) 

with Z being the vertical drop from the spillway crest to the inception point.  Hiller et al. 

(2019) also omitted the slope term from a stone Froude number used to analyze riprap 

performance, FS = q/(gd 3)1/2, with d being the stone diameter.  Many investigations have 

analyzed data pertaining to only a single slope (e.g., Meireles & Matos 2009; Amador et al. 

2009) and have related the roughness Froude number with the included slope term to the 

inception distance along the slope and the inception flow depth; omitting the slope term 

would have yielded relationships of similar quality with adjusted coefficient values. 

3 Physical significance of the roughness Froude number 

The traditional Froude number uses reference quantities (velocity and flow depth) that are 

both related to bulk properties of the flowing water.  In contrast, the roughness Froude 

number is a hybrid parameter, mixing reference quantities that relate to flow (unit discharge, 

q) and properties of the flow boundary (roughness length, ks).  Even expanding and separating 

terms, the quantity q/ks does not represent a real velocity, but instead a fictitious velocity that 
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would result from passing all of the flow through the space occupied by the roughness 

elements.  Additionally, the (gks)1/2 term is not related to flow, whereas the (gD)1/2 term in the 

flow Froude number represents shallow wave celerity or gravitational forces applied to the 

flowing water.  It could be argued that (gks)1/2 represents gravitational forces applied to the 

water contained in the spaces between the roughness elements (interstitial flow if the surface 

layer were composed of something porous like stone riprap).  Other forms of Froude numbers 

used in specialized hydraulic engineering applications use mixed references to both flow 

quantities and channel bed or transported object characteristics.  For example, the densimetric 

Froude number used to model floating vessels and debris uses the flow velocity and a 

characteristic length of the modeled object, with an adjustment to account for buoyancy 

(Ettema et al. 2000).  The familiar Shields parameter used to model bed sediment movement 

can be viewed as the square of a densimetric Froude number involving the shear velocity of 

the flow and the bed particle length scale, again with a density factor.  It can be interpreted 

physically as the ratio of the driving force (drag, or bed shear stress) to the resisting force 

(particle weight and friction).  Finally, a particle densimetric Froude number using the mean 

flow velocity and the sediment particle size has been proposed by Aguirre-Pe et al. (2003) for 

sediment transport applications.  These examples show that there can be utility in mixing 

reference quantities related to both the flow and boundaries or objects.  

The traditional flow Froude number is associated with distinct flow regimes in open 

channel flow that have distinct mechanical characteristics.  F<1 indicates subcritical flow in 

which waves are able to travel both upstream and downstream so that downstream conditions 

may affect the upstream flow, while F>1 indicates supercritical flow in which all waves are 

swept downstream and there is an absolute separation between downstream and upstream 

conditions.  Froude numbers in other scientific fields also relate to fundamental changes in 

mechanical behavior.  For example, in the field of gait analysis, a walking Froude number, 

FW = v2/gL, may be computed representing the ratio of centripetal force to the weight of the 

walking animal for an inverted pendulum that represents the walking limb (Vaughan & 

O’Malley 2005).  The travel speed is v and the characteristic length, L, is often taken to be the 

total length of the leg or the height of the hip joint.  (FW
 1/2 is dimensionally analogous to the 

flow Froude number, and is described by Vaughan and O’Malley as the dimensionless 

velocity, β.)  In bipeds, FW = 1 represents the theoretical limit for walking, as any larger value 

indicates that the foot will fail to strike the ground before the leg swing repeats; the practical 

transition from walking to running tends to occur before this limit is reached, at around 

FW = 0.5 (Alexander 1989).  Most medium to large quadrupeds switch from a traditional walk 

to a symmetric running gait (trot or pace) at about FW = 1, and a transition to asymmetric gaits 

(e.g., canter, transverse gallop, rotary gallop, bound, or pronk) occurs around FW = 2 or 3 

(Alexander 1984).  There is some variation of these gait transition values among small 
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animals that are not subject to the limitations on bone and muscle stress that occur at larger 

scales (Alexander and Jayes 1983; Biewener 1989; Alexander 2005), but general dynamic 

similarity is seen across many classes of ground-based animals. 

Gait analysis related to other forms of locomotion could make use of the Froude 

number.  In wing-propelled (flapping) flight, distinct gaits and wing stroke mechanics have 

been recognized at different flight speeds (Rayner et al. 1986).  Gaits in the swimming of fish 

have also been observed, with shifts from propulsion by alternating pectoral fin motions (left-

right) at low speeds to synchronous (in-phase) pectoral fin movements at moderate speed and 

finally to axial propulsion by movements of the whole body and tail (caudal fin) at high 

speeds (Hale et al. 2006; Gibb et al. 1994).  Flying and swimming gaits have not been 

analyzed in a fully dimensionless way, although gait transitions in fish have been related to 

relative swimming speeds expressed in body lengths per unit time.  A flying or swimming 

Froude number has not been applied to either the flight or swimming cases, but one could be 

formed using body length or wing characteristic dimensions that might correlate with flying 

and swimming gait changes in a manner analogous to the ground-based gait studies.  These 

applications of various Froude numbers in a range of sciences exhibit the potential for such 

parameters to relate to fundamental shifts in mechanical behavior, but no similar explanation 

has been previously offered for the roughness Froude number. 

The most apparent change in the mechanics of stepped chute flow is the transition 

between the nappe and skimming flow regimes (Fig. 3).  Nappe flow occurs when each step 

functions independently as a free overfall, with subcritical flow on the tread, critical flow at 

the brink of each step, and a hydraulic jump on the tread of the next step.  Transitional 

subregimes of nappe flow have been described, based on the flow condition on the tread as 

influenced by the next downstream step: either a fully developed hydraulic jump, partially 

developed jump, or no jump (Chanson 1994b).  Skimming flow occurs when the flow is 

supercritical and nearly uniform from the tip of one step to the next, forming enclosed 

rotating vortices in the lee of each step (Figs 1 and 3).  Streamlines illustrated from CFD 

studies by Cheng et al. (2014) demonstrate that even in skimming flow, each step tip 

significantly affects the flow.  Data compiled by Chanson and Toombes (2004) and Kramer 

and Chanson (2018) indicate the approximate boundaries of the transitional ranges. 

The transition from nappe to skimming flow has been related to the dimensionless 

combination dc/h, with dc being the critical depth, (q2/g)1/3 in a wide channel, and h the 

vertical step height (Chanson 2002; Boes & Hager 2003b; Ohtsu et al. 2001, 2004).  More 

refined studies of the transition zone show that it spans a range of values of dc/h, with a lower 

limit defining the boundary between nappe flow and transitional skimming flow and an upper 

limit defining the boundary between the transitional range and fully skimming flow.  Chanson 

and Toombes (2004) suggested curves defining the relation between dc/h and the chute slope 
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at both edges of the transitional range.  These expressions can also be converted to the ratio 

dc/ks, with ks = h∙cos(θ). 

The ratio [dc/(ks sin(θ )0.5)]1.5 is equal to the roughness Froude number as defined in 

Eq. (1) [dc/(ks sin(θ)0.5)]1.5 = q/(g sin(θ) ks
3)1/2.  If the sin(θ) terms are replaced by cos(θ) to 

incorporate the gravitational component that is normal rather than parallel to the chute slope, 

then [dc/(ks cos(θ)0.5)]1.5 = q/(g cos(θ) ks
3)1/2.  Figures 4 and 5 show plotted values of these 

expressions for the transitional threshold curves of Chanson and Toombes (2004) and data 

points compiled by Kramer and Chanson (2018) at the nappe-transition and transition-

skimming flow boundaries.  For the expression using cos(θ) in the denominator, the lower 

bound of the transitional range is insensitive to slope and is in the range of q/(g cos(θ) ks
3)1/2  

≈ 0.5 to 1.0.   The expression using sin(θ) in the denominator exhibits large variation with 

slope (Fig. 5).  It is hypothesized here that a roughness Froude number defined as F* = 

q/(g cos (θ) ks
3)1/2 provides a physically-based parameter that is related to the mechanical 

changes in flow structure that occur in the transition from nappe to skimming flow, and this 

explains the relatively constant transition range boundaries in Fig. 4. 

4 Closing remarks 

The development of the roughness Froude number has followed an indirect path, beginning 

with research on the aeration inception point of prototype smooth chutes by Prof. Ian Wood 

and his postgraduate students at the University of Canterbury.  Although empirically shown to 

have great usefulness, the parameter has never been derived from basic fluid mechanics 

principles but arises primarily from dimensional considerations.  Its roots lie in an inception 

Froude number based entirely on flow-related references (discharge and flow depth), but the 

roughness Froude number is a hybrid that adopts similar mathematical form while combining 

flow and boundary roughness references (discharge and step height or roughness size).  The 

sin(θ) term in the denominator of the most commonly used form seems to be an artifact of the 

choice made in the development of the inception Froude number to express the energy head 

of the flow at the inception point as a function of the distance traveled along the channel 

slope, rather than the explicit vertical drop.  An alternate interpretation relying on the sin(θ) 

term is that the roughness Froude number is proportional to the ratio of the 1.5 power of the 

relative submergence of roughness elements and the square root of the friction factor. 

Use of the roughness Froude number in studies of aeration inception for both smooth 

and stepped chutes has become so widespread that many recent references give no citations to 

its origin, just as most hydraulic researchers do not cite the origins of such ubiquitous 

concepts as the Froude number, Reynolds number, and Chezy, Manning, and Darcy-

Weisbach frictional resistance models.  Keller and Rastogi (1977) were the first to present the 
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parameter in approximately the functional form now commonly used, but they did not include 

the sin(θ) term in the denominator and did not identify the variable grouping with a distinct 

name or symbol.  Cain and Wood (1981) and Wood et al. (1983) added the sin(θ) term and 

suggested the F* symbol.  In the stepped chute arena, Chanson (1994b, 2002), Boes and 

Minor (2000), Hager and Boes (2000), and Boes and Hager (2003a, 2003b) applied the 

roughness Froude number name that is now commonly used. 

Although many researchers have related the roughness Froude number to the location 

and flow properties of the air inception point, none have explored the possibility that it could 

also serve as a fundamental indicator—like the flow Froude number and similar 

dimensionless numbers applied in other fields—of important shifts in mechanical behavior.  

Considering that possibility here reveals that incorporating cos(θ) into the roughness Froude 

number in place of sin(θ) produces a dimensionless number with relatively constant values 

over a broad range of slopes at the threshold between nappe and transitional skimming flow.  

A roughness Froude number defined in that way could serve a purpose similar to the 

traditional flow Froude number F = 1 that divides subcritical and supercritical flow.  An open 

question that remains is whether there may be other important mechanical features of flow in 

relatively smooth (i.e., non-stepped) chutes that can also be explained by the roughness 

Froude number.  One possibility may be the formation of roll waves or slug flow in open 

channel chutes.  A recent study (Di Cristo et al. 2010) does not employ the roughness Froude 

number but suggests that channel roughness can have some influence. 
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Notation 

D = flow depth (m) 
Di  = flow depth at aeration inception point (m) 

d  = stone diameter (m) 

dc  = critical depth, (q2/g)1/3, (m) 

F  = Froude number (-) 

FS  = stone Froude number (-) 

FW  = walking Froude number (-) 

F*  = roughness Froude number (-) 
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f = Darcy friction factor (-)g  = acceleration due to gravity (m s-2) 

h  = step height measured vertically (m) 

ks  = reference measure of surface roughness (m) 

L  = characteristic leg length or hip joint height for walking Froude number (m) 

q  = unit discharge (m2 s-1) 

S  = sin θ = slope of chute (elevation change per unit distance along slope) (-) 

v = velocity of walking or running (m s-1) 

V = flow velocity (m s-1) 

Vi  = flow velocity at aeration inception point (m s-1) 

xi  = flow distance traveled along the channel surface to the aeration inception point (m) 

Z  = vertical distance from spillway crest to aeration inception point (m) 

β  = dimensionless velocity, FW
 1/2, (-) 

δ  = boundary layer thickness (m) 

𝜖𝜖  = sand-grain roughness of flow surface, rugosity (m) 

θ   = slope angle of chute, measured from horizontal (-) 
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Figure 1  Skimming flow in a stepped chute on a 0.8:1 (h:v) slope (51.3°). Adapted from 

Frizell & Frizell (2015). 

Figure 2  Photos show: (a) inception of aerated flow midway down the face of 81-m (265-ft) 

high Norris Dam (Tennessee) at Q = 368 m3 s-1 (13,000 ft3 s-1), q = 4.0 m2 s-1 (43 ft2 s-1); (b) 

non-aerated flow (except along edges) through one gate of 67-m (220-ft) high Madden Dam 

(Panama) at Q = 456 m3 s-1 (16,100 ft3 s-1), q = 15.0 m2 s-1 (161 ft2 s-1). Adapted from Lane 

(1939). Every effort has been made to trace the copyright holders and obtain permission to 

reproduce this image. Please contact the publisher with any enquiries or any information 

relating to this image or the rights holder. 

Figure 3  Flow mechanics of (a) nappe and (b) skimming flows in stepped chutes.  Adapted 

from Chanson (1994a). 

Figure 4  Values of q/( g cos θ ks
3)1/2

 and curves fit to data at thresholds between nappe, 

transitional, and skimming flows.  Curves developed and data compiled by Kramer & 

Chanson (2018). 

Figure 5  Values of q/( g sin θ ks
3)1/2

 and curves fit to data at thresholds between nappe, 

transitional, and skimming flows.  Curves developed and data compiled by Kramer & 

Chanson (2018). 
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Figure 2  Photos show: (a) inception of aerated flow midway down the face of 81-m (265-ft) 
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Figure 3  Flow mechanics of (a) nappe and (b) skimming flows in stepped chutes.  Adapted 

from Chanson (1994a). 
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Figure 4  Values of q/(g cos θ ks
3)1/2

 and curves fit to data at thresholds between nappe, 

transitional, and skimming flows.  Curves developed and data compiled by Kramer & 

Chanson (2018). 
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Figure 5  Values of q/(g sin θ ks
3)1/2

 and curves fit to data at thresholds between nappe, 

transitional, and skimming flows.  Curves developed and data compiled by Kramer & 

Chanson (2018). 
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