

M
$\stackrel{N}{N}$

PAP

This Thesis for the llaster of Science Degree by John Spurgeon Watkins has been approved for the Department of Civil Engineering
by

\qquad

Date

Watlins, John Sourceon (I.B., Civil Mngineoring)
Tiprap Stability in Channels
Thesis directed by Dr. Warren DeLapp
Riprap is used in channels to dissipate the excessive energy of flow which would otinerwise erode the channel and thereby decrease flow efficiency. Flow efficiency or discharge capacity is ant to be reduced at points of scour by such forms of discontinuity as vorticies and boils which introduce air into the water as well as impede its downstrean movement. Several theories have been proposed in an attempt to arrive at meaningful design criteria for the size of riprap needed in a given situation. Because the problem is so complex, reliable experimental data concerning riprap is scarce.

In this study, the writer attempts to analyse the problem on the basis of forces resulting from boundary relocity distribution at the riprap surface. Velocity profiles were measured and recorded with the aid of a differntial pressure cell for the following two conditions:

1) Initial instability-defined as the removal of several pieces of riprap from their original location leaving a scour hole or cavity.
2) Scour to a depth equal to the largest size of riprap present in the test category.

The infomation obtained by this research will lay the groundwork for future studies in ripran gradation. This provides an interesting comparison with formulations published to date for specifying ripeap sizes in prototype design. The tests discussed only concern size categories which fall near the sise versus velocity curves shown at the end of the report. However, it must be noted that the curves
published by the U.S. Bureau of Reclanation and others represent the 50 per cent passing material in a well graded riprap sample. The pressure distribution imediately above the rock surface is investigated to check possible uplift tendencies. Static pressure wall ports and a multiple Prandtl tube probe were used.

Shape as a parameter was investigated by comparing data taken from both cobbles and angular material. Carcful measurements of physical characteristics were made on a random sample from each size category of test material. Measurements included volume, weight, and major axial dimensions. Photographs were also taken before and after one erosion test for each size category. An attempt was made to compute the scale factors of material measured as a preliminary step for proposed model tests of full scale riprap gradations.

This abstract is approved as to form and content.

Signed
Faculty member in charge of dissertation

Sincere thanks are extended to the U.S. Bureau of Reclamation for the use of the Hydraulics Branch research facilities and equipment. The writer is particularly indebted to Al Peterka, Jim Carlson, M. E. Day, Phil Enger, Tom Rhone, and many of the members of the Hydraulics Branch who spent hours helping the writer in equipment adjustment and data analysis. Special thanks go to Dr. Warren DeLapp for directing the thesis, and to Mary Ann Watkins for typing and general encouragement.
$A_{c}=$ uross-sectional area of the contracted jet of the flow, ft. ${ }^{2}$
$\mathrm{a}, \mathrm{b}, \mathrm{c}=$ axial dimensions: longest, intermediate, and shortest, respectively, inches.
c, $c_{1}, c_{2}=$ Constants of variation.
$c_{2}=$ Coefficient of energy loss which is a function of the contraction of the subserged flow jet under the baffle, dimensionless.
$c_{v}=$ Coefficient of energy loss which is a function of velocity of flow, dimensionless.
$D=$ depth of the velocity jet under the baffle (modified from baffle opening for jet contraction), ft.
$\mathrm{d}=$ Characteristic linear dimension for sediment size, inches.
$d_{s}=$ Diameter of equivalent weight sphere, inches.
$d_{c}=$ Edge of equivalent weight cube, inches.
$d_{s c}=A$ linear size measurement which conbines characteristics of both cube edge anu spiere dianeter (see eq. $1.4, \mathrm{p} .6$).
$f=$ Frequency of repetition, cycles per second, of similar velocity fluctuations.
$\mathrm{g}=$ Acceleration of gravity.
$h_{A}=$ Amplitude of the velocity head fluctration, fps.
$h_{B}=$ Energy loss at the baffle, f't.
$K=$ Special coefficient of variation developed by Hedar (see p. 10).
$L=$ Characteristic eddie length as aefined by Dryden, ft. (see p. 20) .
$n=$ Porosity, uimensiomless.
$p_{0}=$ Static pressure, psi.
$p_{S}=$ Stagnation pressure, psi.
$q=$ Discharge per foot of channel width, efs/ft.
$q_{j}=$ Jet discharge per foot of width under the baffle, efs/ft.
$R(y)=$ Correlation coefficient of longitudinal fluctuation of velocity (component normal to the flow tube section, see p. 26).
$s=$ Shape factor, dimensionless.
sp. Er. = Specific gravity, dimensionless.
$u=$ Total Iongitudinal velocity component at a point, fps.
$\bar{u}=$ Mean longitudinal velocity component at a point, fps.
$u^{1}=u-\bar{u}=$ Turbulence fluctuations about the mean velocity at a point in the flow, fps.
$V=$ Volume of riprap material, $f t^{3}$.
$\nabla=$ hean point velocity, fps.
$v=$ Mean velocity in the channel of flow, fps.
$\mathrm{v}_{\mathrm{b}}, \mathrm{v}_{\mathrm{m}}=$ Nean water velocity for incipient or beginning motion of a given size aggregate, fps or meters/sec.
$y=$ Effective depth of flow, ft.
$y_{V}=V_{\text {erticul }}$ distince from a meaian point in the rock surface profile to a given point in flow velocity, incies.
$W=$ Weight of individual rock, lbs.
$W_{S C}=$ Equivalent weight conbining characteristics of both cube and sphere (see eq. 1.3, p. 6), Ibs.
$\alpha=$ Slope of channel at the centerline in the direction of flow, dimensionless.
$\gamma_{s}=$ Unit weigit of stome, Ibs/It. ${ }^{3}$
$\gamma_{\mathrm{w}}=$ Unit weight of water, Ibs/ft ${ }^{3}$.
$\theta=$ Position function, diuensionless.
$\mu=$ Dynanic viscosity of watur, $1 \mathrm{~b}-\mathrm{sec} / \mathrm{ft}^{2}$.
$\pi=3.14159$
$\rho=$ Term used for natural slope of randomly placed rubble (similar to angle of repose, see eq. $1.12, \mathrm{p} .11$).
$\rho=$ Density oí stone, $1 \mathrm{~b}-\sec ^{2} / \mathrm{ft}^{4}($ see eq. $1.13, \mathrm{p} .13)$.
$\rho_{s}=$ Lensity of stone, Ib-sec ${ }^{2} / \mathrm{ft}^{4}$.
$\rho_{\pi}=$ Lensity of water, ID $-\sec ^{2} / I^{\prime} \tau^{+r}$.
$\sigma=$ Lensity of water (see eq. 1.13, p. 13), $I b-\sec ^{2} / \mathrm{ft}^{4}$. $\psi=$ Natural angle of repose of material measured from the horizontal. $\tan \phi=$ Coefficient of internal friction. $^{\text {in }}$

TABLic UF CLitcunts
PAGE

Introduction 1
Kiprap Stability 2
riprap railure Sequence 3
Parameters of Stability 4
Shape 4 Gradation 5 носk Size 5 Blanket Thickness 6

Velocity as Index to Cumient srosion . . . 7
Velocity Versus riprap Size 7

Erocedure Lxplanation 15
Test Procedure 19

Chisiter 112. hisulis ail eviciusiuils
Data Mnalysis 21
-valuation Lutiline of lests 34
Conclusions and recomenations 36

BLBLLGGLIHY 39
HFーULX 115

PHYSICAL UHATACTELISTICS CF RIPAAP
3/4 to $11 / 2$ inch cobbIcs 42
$11 / 2$ to 3 inch cobbles 43
3 to 6 inch cobbles 44
6 to 9 inch cobbles $4 / 4$
$11 / 2$ to 3 inch angulai 45
3 to 6 inch angular 46
6 to 9 inch angular 47

3/4 to $11 / 2$ inch cobbles 48
$11 / 2$ to 3 inch cobbles 50
3 to 6 inch cobbles 22
6 to 9 inch cobbles 53 .
$11 / 2$ to 3 inca angular 54
3 to 6 incn angulai 56
6 to 9 inch angulas 5 3

Cobbles 60
angular 61

$3 / 4$ to $11 / 2$ inch cobbles 62
$11 / 2$ to 3 inch cóoles 04
3 to 6 inch cobbles 66

Tabie	.	Page
17B	6 to 9 inch cobbles	67
18	$11 / 2$ to 3 inch angular	68
19	3 to 6 inch angular	70
20	6 to y inen angulai	72
21		74
22		75
23	curpaidsen up velugity curputatilins	76

LiST UF FiGuilus

FIGULE

PAGE

1
2

3

4

5A
5
6
7 A
7B
0 A
Sis
9A
93

10
11

Schematic or Movable Dafile in rlume . . . 77
Gencial View oir lest racility 7ó
Hye Lest Showing Velocity Jet 79
6-inch Scour lests 00
Scour lests in Hlan View
3 to 6 inch cobbles 31
6 to 9 inch cobbles 01
6 to y inch cobbles 82
6 to 9 inch coibiles : 83
$11 / 2$ to 3 inch cobbles 03
$3 / 4$ to $11 / 2$ inch cobibles 04
3 to 6 inca anguiar 04
$11 / 2$ to 3 inch angular 85
6 to 9 inch angular 85
necorde. lapes
Single Gianncl 06
single unannel $\delta 7$
Dual Hamel
Wall ror't fressuies
3/4 to $11 / \alpha$ incn cobbles oy
$11 / \kappa$ to 3 incin cobivies 90.
3 to 6 inch cobbles 91
6 to y inch cobbles 92
FAUUN PAGE
Velocity Proiiles1710
17, 20
,3/4 to $11 / 2$ inch cobbles93
$11 / 2$ to 3 incir cobbles 943 to 6 inch cobbles95
21, 22 6 to y inch coboles 97
$23,24,25$ 3 to 6 inch angular. 99
26, 27$11 / 2$ to 3 inch anguiar102
20, 29 6 to y inch angular 104
$30,31,31 \mathrm{~A}$ Scour Liross Sections 106
32, 33 Linvelope Velucity urues 109
34 l. S. burcau of tweclamation Velocity curve 111
33 U. S. mirry vorps oi migineers Velocity curve 112
36 Andersson's Sumaiy of Velocity courves 113
'37 Fi-tem hiriay 114

CHAPTER 1

BACKGROUND AND THEORTTICAL CONSIDERATIONS

Riprap protection is an important feature of water conveying systems. Since early times, man has known that he could protect his property from erosion by placing rocks and other forms of rubble in the area of scour. As the population density along waterways became heavier, the need for more sophisticated methods of providing erosion rrotection was made evident.

It is the objective of the writer to approach the problem in a pragmatic manner to ascertain what the problems involve, and how the modern researcher can pursue the following questions:
a. What are the factors of stability?
b. What stability factors are significant to the designer?

Techniques for choice of riprap size and specifications have lacked the basic information which could be found in the laboratory. This deficit of information is partially due to the difficult problem of isolating any of the many parameters responsible for the erosion of riprap. The equipment used in this study establishes boundary velocity conditions by using a sluice gate type of rovable baffle to induce a submerged jet along the riprap surface. This study investigates only the conditions present on the strean bed and does not consider embankment problems.

Birrap Stability .

The imnediate question arises; what are the stability requirements of riprap? Riprap has been defined as..."a layer, facing or protective mound of stones randorily placed to prevent erosion, scour or sloughing of a structure or embankment; also the stone so used (1) \%." The Bureau of Public Roads broadened this definition to include mortared and grouted riprap, concrete in bags, concrete slab riprap and stone riprap for foundation protection(2). These descriptions point to the importance of weight and flexibility for stability. Closely related to weight is the effective size, gradation, shape and general proportions of the overall blanket. Finally, the manner of placement may be the sole reason for instability of the blanket, and a major factor in the cost as well.

Along with the physical characteristics of the blanket, the behavior of the riprap when exposed to hydrodynamic forces must be analysed. Turbulence resulting from various forms of roughness, velocity patterns, and the resulting pressure fields in the fluid all result in significant forces which can dislodge portions of the protective blanket.

Cost is a dominant consideration in every aspect of riprap construction. Consequently, the handling of the heavier pieces becomes an expensive factor in placement. Conflicting with this desire for less weight however, is the fact that none of the other paraneters seem to be a sufficient substitute for weight as a stablizing factor. Riprap blankets have failed when the thickness Was doubled to compensate for the use of lighter materials. Another
substitute for weight has been the use of various techniques to increase the size of the unit, for example: tieing several sections together with wire screen, cable and mortar to link individual or grouns of stones or manmade materials into one flexible unit (2) (3) (4). Naib (5) and Carey (4) give information about other forms of namade ripran which have great promise for the future. Also very important is the type of foundation constructed for the riprap. The type of soil filter used can be instrumental in determining whether or not the bank will erode between the larger portions of riprap (2) (6) (7). Length of the riprap blanket is determined by estimates of the area affected by eroding forces such as high velocity jets, turbulent eddies and vortices (2). Side slope, centerline grade and hydraulic radius all play an important part in this analysis. Better nethods of predicting future sources of change in the watercourse and their effect on stability requirements would be of considerable help to the riprap designer. For the purposes of this report, however, the discussion will be restricted to some of the more fundamental stability parameters of riprap. These parameters shall include rock size (weight and volume), shape (round versus angular), and water velocity and pressure variations with depth and time.

Riprap Pailure Sequence

An analysis of the sequence of events occurring at the time of riprap failure should shed some light on the areas for study. From general observations in the laboratory and natural stream beds, it has been noted that as the velocity at the riprap surface is increased, there is a slight rearranging of the material according to shape. A slight quivering becones increasingly evident anong the smallex rocks.

The quivering seens to be directly related to the cross-sectional area of the individual rock exposed to the current and its position with relation to adjacent segrents. Failure is often initiated by the removal of a key stone behind which a line of other stones has been formed by current pattems. A whole line at a time may fail and wash downstrean a significant distance. A portion of the blanket is then cratered, and its resistance to future erosion reduced. The larger the stone size, the less warning occurs before failure. The stone may be lifted suddenly high into the current of flow, as in Figure 4B. To the contrary, the larger material, if it is shaped right, may merely adjust slightly to a more stable position and remain stationary.

PARAMETGRS OF STABTIITY
From the above sequence, it can be seen that certain difficult-to-define non-uniform parameters exist in the riprap installation that make analysis difficult. The rock shape and position may vary considerably. Velocity currents can form in a myniad of different patterns and time sequences. Fluctuations in flow cause multiple variations of pressure forces on the riprap. Shape

Shape can be described as stream rounded cobbles, hereafter referred to as "cobbles", and quarry-blasted, crushed "engular" material. Shape can also be significantly categorized by dimension ratios sengrating rods, disks and blades from spheres (7) (8) (9) (10). Ratio limits should be detemined for maximum variations allowable in Iength to width thickness. The Amy Comps of Fngineers makes
the following comments avout shape: "The shape of rock that tends to break due to quarry operations or other reasons into elongated or slabby particles needs to be controlled by provisions in the specifications. It is desirable not to have stone whose long dimension materially exceeds their short dimension." Cubical stones "nest" together best and are most resistant to movement. Limitations should be specified as follows:
a. Stones having the ratio of longest to shortest dimensions greater than two should not exceed twenty-five per cent of the total.
b. Stones having the ratio of longest to shortest dimensions greater than three should not exceed five per cent of the total riprap material. (11)

Gradation
Gradation follows directly as the next point of interest. There is the question of which portion of the gradation should make up the largest portion of the blanket-the larger sizes or the fifty per cent passing or some other portion of the blanket? Should this be detemined by gross volume or weight? What is the most desirable per cent of smalls to be included? The Bureau of Fublic Roads, the U.S. Army Corps of Ingineers, and the Bureau of Reclamation have all written specifications for riprap.

Rock Size
The specijication of the size of individual yieces of riprap is furtiner complicated by the different methods used. One method that seems to be prevalent specifies size by the dianeter of sphere of volume and weight equal to that of the individual stone (11).

Reduced to equation forn:

$$
\begin{equation*}
\text { Weight }=\pi=\left(\gamma_{s} \pi d_{s}^{3}\right) / 6 \tag{1.1}
\end{equation*}
$$ where $\gamma_{s}=$ unit weight of stone, $1 \mathrm{~b} / \mathrm{ft}^{3}$

$d_{s}=$ diameter of equivalent weight sphere.

$$
\begin{align*}
& d_{s}=\left(6 W / \gamma_{s} \pi\right)^{\frac{1}{3}} \tag{1.2}\\
& d_{s}=\left(W / 0.52 \gamma_{s}\right)^{\frac{1}{3}}
\end{align*}
$$

A second form combines the characteristics of both cube and sphere as follows (11):

$$
\begin{equation*}
\text { Weight }=W_{s c}=\frac{1}{2}\left[d_{c}^{3} \gamma_{s}+\gamma_{s}\left(\pi d_{s}^{3} / 6\right)\right] \text {, } \tag{1.3}
\end{equation*}
$$

where $d_{c}=$ edge of equivalent weight cube.
Calling the new dimension $d_{s c}$, for cube and sphere dimensions combined, and solving for it:

$$
\begin{equation*}
d_{s c}=\left[2 W /(1+\pi / 6) \gamma_{s}\right]^{\frac{1}{3}}=\left(w / 0.76 \gamma_{s}\right)^{\frac{1}{3}} \tag{1.4}
\end{equation*}
$$

Conversion from one to the other form may be nade by applying the appropriate factor:

$$
\begin{equation*}
\mathrm{d}_{\mathrm{s}}=1.13 \mathrm{~d}_{\mathrm{sc}} . \tag{1.5}
\end{equation*}
$$

For studying the various size to velocity curves, both forms of d will be used (d_{S} for cobbles and $d_{s c}$ for angulars) since the curve shifits according to the size parameter used.

Blanket Thickness
Blanket thickness is directly related to the particle size. Some designers (11) specify that the thickness of the riprap layer shall be equal to or greater than one hundred per cent passing or 1.5 times fifty per cent passing, whichever results in the greater thickness. The object is to be sure that all stones are fully contained within the riprap Iayer.

Velocity as Index to Gurrent Srosion Potential
Fiprap installations are surrounded by varying pressure and velocity fields resulting from turbulent flow in and around the rocks that make up the blanket of protection. Of main interest to those concerned with riprap throughout its history has been the so-called competent velocity at which riprap erodes. Juch terninology and data have been drawn from the closely related subject of sediment transport. Competent condition is the term used by Berry (12) to describe the limiting case between the vibration of bed-load and the start of uninterrupted movement of the pebble.

The cause or indicators of the forces present in a given situation have been separated into two general categories. These are velocity scour and turbulent boil or scour. Both forms relate to flow characteristics in the channel.

Velocity versus Riprap Size
The use of velocity as an indicator of rinran size recuirements in a channel has been widely practiced. The number of particular velocities considered significant are almost as mumerous as the originators. The mean velocity was generally considered a good index until a number of researchers presented velocity-versus-size curves that showed how sensitive the upper range of sizes were to even a sljight change in velocity. From these curves, (Figures 34 and 35) it can be scen how a slight error in the velocity chosen as critical could radically change the stability capability of the riprap layer.

Berry (12) defines a competent mean velocity, sometimes known as the critical mean velocity, as the velocity at which a certain
size sediment on a channel bottom is just moved. He states that there is a limitation to mean-velocity criteria in that it does not bear a constant relationship to the bottom velocity. It is the bottom velocity which is the probable controlling factor in bedload transportation. Iikewise bottom velocity is significant in riprap instability.

Another reference to the mean velocity was nade by Etcheverry (13) in 1915. He states: "Bottom velocity is approximately 0.75 of the mean velocity." This figure was used by Peterka (14) in estimating velocities present in several prototype examples which both survived and failed under excessive flow conditions.

Berry (12) reports that ..."Bogardi, on the basis of his experimental studies in Iowa, found that:
(a) The roughness factor denoting the bed friction varies independently from the critical mean velocity as well as from the critical bottom velocity. He therefore concluded, that from the point of view of bed friction alone, it is the same to characterize the competent condition by the mean velocity as by the bottom velocity:
(b) Within the limits of his experiments, for the same bed-load the competent mean and bottom velocities were not influenced by the width of the flume. From this viewpoint also, there is no difference Whether we use the critical mean or competent bottom velocities for the criteria for start of moverent.
(c) He further found that for the same bed-load material the competent bottom velocity does not denend upon the depth of water in the channel. On the contrary, hovever, the mean velocity varies
with the depth of water, increasing with increasing deyth of water."

Berry (12) further reports that..."as a result of analysing Gilbert's experimental data, Rubey has shom that it is the velocity in the immediate vicinity of the particle on the stream bed that is significant for the start of hed-load movement. He defines the bed-velocity as the velocity at the boundary between the thin film of laminar flow on the stream bed and the main mass of turbulent water above it."

The "sixth-power law" represents a comnonly used relation betreen the eroding power of the current and variation of the velocity. John Leslie (12), Wilfred Airy (15), and S. V. Isbash (16) have been credited for contributing to the development of this relationship. The sixth-power law states that the weight required for stability varies as the sixth power of the velocity acting on . the rock. Isbash's curve interpreting the power law is found in Figures 35 and 36. Figure 35 also gives several arbitrary curves presented for use in specific situations. Cambell says, "To estimate the required size of rock which is stable for a given velocity, the fifty per cent passing is used." "A coefficient $\mathbb{E}_{\mathrm{s}}=1.20$ i.s used as the basis of the Isbash curve." (17) (See Figure 35) Superimposed on the chart will be found data points resulting from the present research for comparison.

Berry (12) introauced the following relation:

$$
\begin{equation*}
v_{b}=0.51 \sqrt{d} \tag{1.6}
\end{equation*}
$$

where d represents sediment sizes from a quarter of an inch to twenty-six inches. Some data points from this curve may be found
on Figure 35. The bed-load material represented is of an average specific gravity of 2.65 . Movement includes rolling or sliding on a bed of the same size, and for average turbulence and particle shapes.

Figure 36 sunnarizes the findings of Soren Andersson (18). For ease of comparison, notation is changed to coincide with that used throughout this renort. The folloring is an excernt from Andersson's report: "SHIELD'S (1936)

$$
\begin{equation*}
d=\frac{\gamma_{\omega}}{\gamma_{s}-\gamma_{\omega}}\left[\frac{y \sin \alpha}{0.06}\right] \tag{1.7}
\end{equation*}
$$

where $\alpha=\&$ slope of channel in the direction of flow. MEYER, PETYR \& MULIER (1048)

$$
\begin{equation*}
d=\left[\frac{\gamma_{w}}{\gamma_{s}-\gamma_{w}}\right]\left[\frac{y^{\circ} \sin \alpha}{0.03 \text { to } 0.047}\right] \tag{1.8}
\end{equation*}
$$

where 0.03 must be assigned to complete rest and 0.047 to a situation in which material transport is zero. The last value was obtained by extrapolation of the test values in measurements of material transport.
gundiorg (1956)

$$
\begin{equation*}
d=\frac{\gamma_{w}}{\gamma_{s}-\gamma_{w}}\left[\frac{3}{2} c_{1} c_{2}\right]\left[\frac{\sin \alpha}{\tan \phi \cos \alpha-\sin \alpha}\right] \tag{1.9}
\end{equation*}
$$

where c_{1} and $c_{2}=$ coefficients dependent on degree of turbulence and state of density of the material (normally, $c_{1} \cdot c_{2}=c$ may be fixed at 0.087).

HEDAR (1960, 1962)
$d=\frac{\gamma_{\omega}}{\gamma_{s}-\gamma_{\omega}}\left[\frac{1}{K}\right]\left[\frac{v_{m}}{\log \left(\frac{14.83 H}{d}\right)}\right]^{2}\left[\frac{1}{\tan \phi \cos \alpha-\sin \alpha}\right]$
where $v_{m}=$ mean velocity of water, $\mathrm{m} / \mathrm{sec}$
$K=$ coefficient evaluated by Hedar $=7.5$ e For the two
equations above, $\phi=$ angle of natural slope of the stones.

ISBASH (1936)
(1.11) $\quad d=\frac{\gamma_{\omega}}{\gamma_{s}-\gamma_{\omega}}\left[\frac{v_{m}^{2}}{2 g}\right]\left[\frac{1}{1.44}\right]$
where $g=$ acceleration of gravity, $m / \sec ^{2} .^{\prime \prime}$ (18)
The coefficient 1.44 has been obtained empirically on the assumption that the blocks of stone are dumped pell-mell in running water. Andersson further states that his illustration of the above equations and others represent flow on a gentle slope at a depth of water equal to twenty rock diameters (Figure 36).

The California Highway Denartment, in a publication entitied Bank and Shore Protection in California Highway Practice (3), gives specifications for choosing rock size where current velocity governs. Since theirs is for embankment rather than channel bottom protection, it is only mentioned here for general interest. Their nomograph (found in the Appendix) is based on the following equation:

$$
\begin{equation*}
W=\frac{2(10)^{-5} v^{6} \overline{s g}_{r} \csc ^{3}(\rho-\alpha)}{\left(\overline{5 g}_{r}-1\right)^{3}} . \tag{1.12}
\end{equation*}
$$

where $V=$ velocity of the stream near the bank to be protected

$$
\begin{aligned}
\overline{S g}_{r} & =\text { specific gravity of the stones } \\
\rho & =70^{\circ} \text { for randomy placed rubble } \\
\alpha & =\text { embankment face slope } \\
W & =\text { minimum weight in pounds of outside stone for } \\
& \text { no danage. }
\end{aligned}
$$

It is interesting to note that the emphasis is on weight and velocity With a correction factor for specific gravity. They have related random-shaped boulders and broken stone to some of the comnonest geometric shanes which form a shape spectrum extending from fully rounded to folly angular. Tabulations of factors for precisely
defined shapes will provide a basis for interpolation of approximate or intermediate variations (see table and illustration of shapes in Appendix).

The U.S. Bureau of Public Roads has published a report summarizing various uses of riprap for bank protection (2). Their stone-weight versus velocity curves were taken from the same original source as that used by Campbell (19) published and supplemented from time to time by the U.S. Army Corps of Bngineers at the Waterways Experiment Station in Vicksburg, Mississippi. For better comparability, the supplementary curves added by Cambell were superimposed on the figure used by the U.S. Bureau of Public Roads along with data points from Berry (12), Peterka (14), and the present research.
M. G. Hiranandani, director of the Central Water and Power Research Station at Poona, India, has written a review and comparison of his findings during visits to hydraulic research laboratories in the United States, United Kingdorn and France with his activities at the Poona Research Station (20). He tells of experiments that were. conducted at the CWPRS, Poona, in 1940, for determining the size of stone which should be used to represent the stone of block protection given in prototype structures at bridges or else at weirs and falls. "Tests with stones were made both for angular stones and rounded stones. The velocities required for initial continuous movement, and also for general tovement were observed. The stones were laid over a smootio bed and altematively on fixed layers of stones of the same size. The data collected during these experinents for angular stones and for initial movenent enabled the following correlation to be established." (20)

$$
\begin{align*}
\frac{\text { Dia. }}{d} & =0.1145\left[\frac{v^{2}}{g d} \cdot \frac{\rho}{\sigma-\rho}\right] \tag{1.13}\\
(1.14)_{\text {Dia, }} & =0.1145\left[\frac{v^{2}}{g} \cdot \frac{\gamma_{s}}{\gamma_{w}-\gamma_{s}}\right] \\
\text { where } d & =\text { depth of flow in feet } \\
\text { Dia. } & =\text { size of stone-dianeter in feet } \\
\nabla & =\text { average velocity in feet per second } \\
\rho & =\text { density of the stone } \\
\sigma & =\text { density of the water. }
\end{align*}
$$

"The specific gravity of stones used in these experiments varied from 2.94 to 2.83 giviving a mean value of 2.89 . With this specific gravity and an assumed conversion factor of 0.4 , the equation reduces to the form:

$$
\begin{equation*}
\text { Dia }=0.0019 \nabla^{2} \cdot 1 \text { (20) } \tag{1.15}
\end{equation*}
$$

The values obtained from this relation are plotted on the curve of the U.S. Bureau of Reclamation. The trend of this curve appears to be similar to that of the U.S. Bureau of Reclamation. (Figure 34)

It should be observed here that the transporting power of water is different from its erosive power and the two should not be confused. As Berry (12) describes it, transporting power must overcome the weight, and erosive power must break the cohesive bonding of the material. "The latter varies as the square of the bottom velocity while the former varies as the sixth power of the velocitye ${ }^{n}$ It has been observed that in many cases of removal of slightly cohering material, the resistance is a mixture of both, and the power of removing material will vary as some rate betreen v^{2} and v^{6}. It is the cohosive force thiat causes a major difference between prototype and laboratory results. Impurities found only in the prototype waters form various kinds of bonding on the riprap material affecting
the erosion patterns of the smaller crushed material and, in particular, the filter blanket underneath.

Discharge may be a pertinent parameter for rinrab instability. Joonejo (21) concluded from his study of rock movement under flowing water that..."for a given slope and sample, the loss of material increases as the discharge increases." This problem of varying discharge is investigated in the present study.

Dimensionless parameters are often used to help describe significant characteristics of hydraulic systems. These parameters are arrived at by dimensional analysis of a variety of combinations of geometric, kinematic and dynamic dimensions. Reynolds and Froude numbers are familiar dimensionless ratios often used. Vennard (23) and Streeter (2h) both give excellent developments of dimensional analysis including the Buckingham II-theorem. , Buckingham showed that, if. n variables were functions of each other, k equations of their exponents could be written. Dimensional analysis would assemble the variable into ($n-k$) dimensionless grouns which are functionally related. Buckingham designated these dimensionless groups by the capital Greek Ietter Pi (II). The II-theorem offers an advance notice of how many groups are to be expected and some clue as to their formulation.

Giarlus 2
 LABORATORX NUITHMT AND PROCEDURE

Tests were made in the large flume at the U.S. Bureau of Reclamation's Hydraulic Leboratory in Denver, Colorado. As can be seen in Figure 2, only a portion of the flume was used for the actual test section in order to cut down on the amount of rock that would have to be handied. Of the overall flume which is four feet wide by eight feet deep by eighty feet long, the test section containing gravel was reduced to two feet of width and twenty-eight feet of length. The test scour section extended downstrean from the baffle approximately ten feet, but only a portion of this section was usually affected by the subnerged jet. One side of the flume is glass-walled thus lending itself very well to sectional erosion tests. The baffle carrjage and adjacent equipment (Figures 1 and 2) were already assembled for use in previous tests conceming the cleaning of mannade salmon spaming beds in canals (22).

The fundanental function of the equinment used for this study was to provide a relatively homogenous velocity jet in the region near the boundary of the rock surf'ace. In this way, it was hoped that the velocity most signficont for the scour of the particular rock would become more evident. By reducing the number of variables, the research engineer can better examine a complex problen. The passage of the vator under the baffle makes negligible the effect of the wostrean velocity distribution on the test section scour. Thrbulence, though certainly present, is of a much more unifom pattern than found in the field. Turbulent surging often appears to be the major cause for severe scour in prototype structures.

Analysis of the surge pattern recuires a model of the specific situation in each different individual structure, and thus cannot be dealt with in a general study of this type. Figure 1 shows a schematic representation of how the velocity of the submerged jet was increased by lowering the baffle and thereby increasing the differential head which drives the jet.

Several discharges were used to detemine its effect on riprap instability. The Bureau Laboratory uses a typical recirculating system where the water is driven by centrifugal pumos through a pipe system to the model and finally dumped back into a large capacity sump. Discharge was measured by a standard Venturi leter connected to a mercury differential manometer. Twenty-five cubic feet per second was the maximun flow that could be produced by the system.

Velocity distribution was recorded in the vertical plane parallel to and passing through the centerline of the two foot cross section. The one foot scale was included in the pictures showing the scour patterns (FIgures 5 through 9) to indicate the channel centerline. The vertical velocity profile was measured first with one Frandtl type pitot-static tube and luter with two such tubes mounted in tandom, one above the other. In the latter case, the two tubes were spaced a vertical distance apart equal to the largest size of material in the category being tested. For the six to nine inch angular material, the tube spacing was reduced to give more velocity readings for the velocity jet.

The horizontal velocity distribution was assumed to be symetrical about the centerline. Since the flume sides were
relatively sriooth compared to the rock surfuce in the bottom and considering the magnitude of the vclocity in the jet, the syminetry assumption was considered adecuate.

Velocity is measured by recording the differential pressure represented by the total (stagnation) pressure minus the static pressure:

$$
\begin{align*}
\eta= & \sqrt{2 g\left[p_{s}-p_{0}\right] / \gamma} \tag{2.1}\\
\text { where } p_{s} & =\text { stagnation pressure } \\
p_{0} & =\text { static pressure (23). }
\end{align*}
$$

For this study differential pressure transducers of one and five pounds per square inch capacity wore used to measure the velocity head. Several brands of tape recorders were used to produce a graphical record of the pressure fluctation with time. Part of the tests were recorded through an averaging circuit, but for the most part, the pressure differential noted above or velocity head was averaged by eye. The resulting data compared favorably with that obtained with the averaging circuit. Even the mean, value recorded using the averaging circuit did not remain constant. The recorders were recalibrated before each test velocity profile and at the conclusion of the test to check for zero drift and span settings. Recordinc inaccuracies, when noted, were prorated between calibrations with added weight given readings with a high degree of fluctuation. maperience has show that Iarge, frequent pen movements tend to shift the zero setting slightiy and sonetimes change the span setting. A sample of the recordings may be found in Figures 10,11 , and 12. .

Reduction oi velocity was done by estinating the area on either side of a straight hairline etched on plastic which was placed over the recording trace for a riven ooint. The line was adjusted by
eje until approximately equal areas were bound by the trace and the hairline. If drift was noted so that the hairline was not parallel to the grid, the points at which the beginning and ending of the trace intersected the hairline for a particular measurement were noted, and average reading taken at the mid-point on the hairline. In this way, the average velocity at a point for several seconds was taken. Velocity profiles were drawn (Figures 17 through 29) showing the vertical profile of the velocity measured relative to an arbitrarily defined datum. The datum was defined as a maximum envelope level line at the extremities of the riprap surface for tests 1 through 12. For the reminder of the tests, the datum was taken as a preset level line that approximated the average rock surface. That is, some rocks projected above the line and some fell below.

The two states of stability shall be defined as follows:

1. Initial instability shall be that condition when several rocks move from their initial positions indicating a condition of unbalanced forces.
2. Maximum scour shall be restricted to one maxiruw screen size dimension of the category bejng tested.

Rest Procedure

1. Rocks were sized in categories according to specified screen sizes. The cobbles and angular material were tested separately.
2. Random samples were picked from each category, identified by number and sized as discussed above. The volume was measured by water displacement. The physical features a, b, c, and V may be found in Tables 1 through 12.
3. Rocks were placed in the flume at a prescribed depth according to the datum used, and the plan view was photographed (Figures 5 through 9).
4. Flow was established with the baffle wide open.
5. The velocity of the submerged jet was increased slowiy for constant discharge by lowering the baffle. Tine was allowed for the backwater time lag of the systom so that the effect of each incremental gate closure could be identified. Otherwise the critical value of velocity for instability might be pessed by.
6. The baffle opening was recorded for the condition of initial instability as discussed previously.
7. The opening was also measured for complete scour to a depth equal to the larger screen size of the category bejng tested.
8. The velocity profile was then taken.
9. The water depths both upstrean and dowstrean were taken fron time to tire during the velocity measurements.
10. Discharge readings were also made periodicaliy to check against any drift resulting from changing tailwatex conditions.
11. झictures were then made after the maximun scour to show the erosion pattern of the numbered sample rocks.
12. Profiles were drawn of the cross section under the baffle and along the channel centerline to indicate the depth of scour and to estimate the effective flow area under the beffile.

Separate tests were run using several different discharges and depths for several material categories to establish the effect of discharge and blanket thickness as variables to be related to scour velocities. Velocity tests were run twice for most of the rock categories. Rock blanket thickness, discharge and rock placement were kept as nearly identical as possible.

CHAPTER 3

RESULTS AND CONGLUSIONS
Data Analysis
Riprap shape determines how the separate pieces will fit together and equally inportant, how stable it is when exposed to hydraulic forces. The importance of shape has been observed, but practical methods of its determination have been lacking. Several methods are recomended in this report as being helpful in relating a particular ripran sample shape to a simple sphere or rectangular solid.

Description of riprap in place in the prototype is mostly in the form of pictures. A few measurements of size have been made in the field. Ball, Lancaster, and Schuster (25) of the U.S. Bureau of Reclamation discuss a technique used at Grand Coulee Dan in the Columbia Basin Project. "Groups of rocks at varjous stations on both sides of the tailrace banks were located by survey and marked before high water of Nay, 1949. Individual mocks of the groups varied in shape and weight and were chosen at randum to represent a general gradation of riprap in the arez. Nfter the flood season, a re-survey noted the movement of the rocks that remained. Many of the rocks and some groups were not recovered because of readjustments of the rimpap cover. Those rocks noved and recovered after the flood indicate the extent of readjustment (25)." In a similar manner, rocks from each category in this study tested were numbered, weighed, and the volume and tiree axial dimensions measured. The numbered rocks were picked at random from the surface of the test section. After they were measured, they were returned to the top layer with
the expectation that they would be the first rocks to become unstable and scour. Their movement during scour was traced with pictures taken both before and after scour (Figures 5 through 9).

Riprap shape can be described several ways. Zingg (7) developed a classification of particle shapes based on the four general shapes shown below.

Class	Shane	$\frac{b / a}{c}$	$\frac{c / b}{2 / 3}$
I	Disks	$>2 / 3$	$<2 / 3$
II	Spherical	$>2 / 3$	$>2 / 3$
III	Blades	$<2 / 3$	$<2 / 3$
IV	Rodlike	$<2 / 3$	$>2 / 3$

Both Zingg [1935] and later Krumbein [1947], gave descriptions of riprap shape based on ratios or combinations of the axial dimensjons where a, b, and c are, respectively, the major, intermediate, and minor axes; the axes being measured at right angles to each other: Krumbein (7) defines sphericity as the cube root of the ratio of the volune of the circurnscribing sphere. This reduces to $b c / a^{2}$. Theoretically, the closer the rock is to a sphere, the closer the b and c dimensions are to being equal to a. This does not take into consideration the possibility of the rock approaching cubical proportions. It is for just such a problem that the Buckingham II-theorem proves useful.

The pragnatic approach to studying a hydraulic system involves such tools as dinensional analysis. Aprlying the Buckinghar II-theorem to the riprap study, the first step is to identify the possible variables. Letting S equal sone stability index,
(3.1)
$s=\phi\left(D, d, a, b, c, v, s, \theta, n, h_{b}, y_{v}, q, \vec{v}, f, W, \rho_{s}, \rho_{w}, h_{A}, \mu\right)$ where the geometric parameters are identified as:
$D=$ depth of the velocity jet under the baffle (includes contraction of the jet) [I]
$d=$ dianeter of a sphere of weight ecuivalent to the riprap [L]
$\mathrm{a}, \mathrm{b}, \mathrm{c}$, = axial dimensions; longest, intermediate, and shortest, respectively [L]
$\mathrm{V}=$ volume of riprap $\left[\mathrm{I}^{3}\right]$
$\mathrm{s}=$ shape factor [dimensionles]
$\theta=$ position $=\phi$ (shape, nesting, etcetera) \quad [dimensionles]
$\mathrm{n}=$ porosity [dimensionless]
$h_{B}=$ drop in energy head across the baffle [I]
where kineratic parameters are identified as:
$q=$ discharge per foot of channel width $\left[\Psi^{3} / T / L\right]$
$\overline{\mathrm{v}}=$ mean point velocity $\quad[\mathrm{L} / \mathrm{T}]$
$f=$ frequency $\quad[1 / T]$
$y_{v}=$ vertical dictance from rock surface to significent point velocity for scour [L]
where dynamic parameters are identified as:

$$
\begin{array}{ll}
H=\text { weight }[\mathrm{F}] \\
\rho_{s}=\text { density of riprap } & {\left[\mathrm{FT}^{2} / I^{4}\right]} \\
\rho_{\omega}=\text { density of water } & {\left[\mathrm{FT}^{2} / \mathrm{I}\right]}
\end{array}
$$

$$
h_{A}=\operatorname{arplitude} \text { of the velocity head fluctuations }
$$

[L]

$$
\mu=\text { dymanic viscosity of the water }\left[\mathrm{M} / \mathrm{L}^{2}\right]
$$

According to Buckinglian's II-theorem, there tiust be three repeating variables since there are three fundamental dimensions, length, force
and time present. Usually, a variable is chosen fron each of the three categories listed above. In the case of riprap, it would be desirable to have II-terms representing physical features, hydraulic forces, and a combination of the two.

Physical characteristics can be formed into II-terms directly since they are for the most part, a function of length.

$$
\begin{equation*}
I I_{1}=\frac{a+b+c}{3 d} \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
I I_{2}=\frac{a+b+c}{3 y_{v}} \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
I I_{3}=\frac{V}{a b c} \tag{3.4}
\end{equation*}
$$

The third pi term is suggested by the need to compare the rocks actual shape to a rectangular solid of the same axial dimensions.

The hydraulic force terms are a little more difficult to see without some prior knowledge of dimensionless parameters. Beginning with a familiar ratio, the Froude number, $h_{B}, \bar{v}_{\text {, }}$ and g are used. If $I I_{1_{1}}=\not \phi_{4}\left[\vec{v}^{x}, g^{y}, \rho_{s}^{z}, h_{B}^{-1}\right]$ with \vec{v}, g and ρ_{s} the repeating variables, then according to Buckinghan's II-theorem:

$$
\begin{aligned}
& I_{4}= \phi_{4}\left[(L / T)^{x},\left(L / T^{2}\right)^{y},\left(F T^{2} / L^{4}\right)^{z}, L^{-1}\right] \\
& \text { F: } \quad z=0 \\
& \text { L: } \quad x+y-4 z-1=0 \\
& T: \quad-x-2 y+2 z=0 \\
& x=1-y=-2 y \\
& y=-1, \quad x=2 \\
& \text { (3.5) } \quad I_{4}=\frac{\bar{v}^{2}}{h_{B}}
\end{aligned}
$$

For II_{5}, the last term in equation 3.5 was changed to D; and g changed to h_{B} as a repeating variable

$$
\begin{aligned}
& I I_{5}=\phi_{5} \quad\left[\bar{v}_{,}^{x} h_{B}^{y}, \rho_{5}^{z} D^{-1}\right] \\
& I I_{5}=\phi_{5}\left[(I / T)^{x},(L)^{y},\left(\mathrm{FT}^{2} / L^{4}\right)^{z}, L^{-1}\right]
\end{aligned}
$$

$$
\mathrm{F}: \quad \mathrm{z}=0
$$

$$
\text { L: } \quad x+y-4 z-1=0
$$

$$
\text { T: } \quad-x+2 z=0
$$

$$
x=2(0)=0 \text { thus } y=1
$$

(3.6) $I I_{5}=h_{B} / D$

By inspection;
(3.7) $\quad I I_{6}=\frac{\bar{v}^{2}}{D g}$

A combination of hydraulic and physical characteristics can be evaluated by inspection from II_{4} in equation 3.5 :
(3.8) $\mathrm{II}_{7}=\overline{\mathrm{v}}^{2} / \mathrm{dg}$.

A number of other II-terns could be developed, but the present study will be limited to these seven. (Tables 15 through 21)

To formulate an equation with the pi terms, another II-term involving S is needed. But since S is defined as an index, it should remain dimensionless. Thus,
(3.9) $\mathrm{II}_{8}=S \quad$ and since
(3.10) $\mathrm{S}=\mathrm{C}\left[\mathrm{II}_{1} \cdot \mathrm{II}_{2} \cdot \mathrm{II}_{3} \cdot \mathrm{II}_{4} \cdot \mathrm{II}_{5} \cdot \mathrm{II}_{6} \cdot I I_{7} \cdot \ldots \cdot I I_{17}\right]$, where $\mathrm{C}=$ constant,
the researcher must make some decisions about which terms can be measured and which factors are of negligible consideration for riprap design.

Referring back to the list of possible variables, other II-terms to be concerned with, in particular, are those factors which deal with turbulence. The amplitude temm (h_{A}) and frequency term (f) might be linked together in an expression called the scale of turbulence. H. I. Dryden (26) found that a characteristic length was needed in the specification of turbulence. This length was a measure of the magnitude of the turbulent eddies which he called their scale. He found that this length can be experimentally measured by using a correlation coefficient of longitudinal fluctuations u_{1}^{\prime} and u_{2}^{\prime} measured at two points whose transverse distance is y. ixpressed in equation form:

$$
\begin{equation*}
R(y)=\frac{\overline{u_{1}^{\prime} u_{2}^{\prime}}}{\sqrt{\overline{u_{1}^{\prime 2}}} \sqrt{u_{2}^{\prime 2}}} \tag{3.11}
\end{equation*}
$$

where $u=$ total velocity fluctation $\bar{u}=$ mean velocity fluctuation $u^{\prime}=u-\bar{u}=$ turbulence fluctuations over and above the mean velocity $\sqrt{u^{\prime 2}}=$ root-meen-square value of excess turbulence Iluctuation.

The quantity which is characteristic of the scale of turbulence is given as:

$$
\begin{equation*}
I=\int_{0}^{\infty} R(y) d y . \tag{3.12}
\end{equation*}
$$

It is a neasure of the magnitude of the clots of fluid which move together as a unit and thus describe the size of individual eddies. This technique has one difficult remuroment for the researcher. It states that y is to varied from zero to infinity, and the root-meansquare value computed for at least a sufficient number of points inbetween. This task would have been out of the question with the
present instrumentation available. Consequently, the scale of turbulence was not taken for the present report.

The idea of a relationship between turbulence and uplift persisted. As the research progressed, the phenomena of a sudden upward thrust was repeated several times. The problen becane one of measuring pressure fields dow in the ripran and at its surface. The surface profile could be measured with the dual-tube probe, but no way was found to measure pressure among the rocks at the centerline of the channel. The wall ports below the riprap surface were subject to a variety of possible velocity vectors rebounding off of the adjacent rocks as well as just the static pressure head. The water column readings did not fluctuate enough to warrant transducer recording. At any rate, in situations where fluctuations were observed, several readings were taken and averaged. To see iff a trend could be established, the data was plotted. From the plottings, Figures 13. through 16 , it can be seen that a trend of uplift pressure would be difficult to confirm. All but the smallest size material show the higher pressure for final scour at the port farthest below the rock surface. But this is not the case at the next port above. The pressure was higher above the rock surface for about half the cases of initial instability. This would have to be reversed for uplift to take place. Finally, it is recognired that ports adjacent to rocks below the surface probably do not indicate the true static pressure at these points because of variation in the direction of the velocity vectors around the rocks.

Another point of interest is the profile drag of the material. As was briefly mentioned in the first chapter, rocks should in
general be placed in such a why as to have a minimun number of points projecting significantly above the mean rocik surface. The problen of surface drag effects is the reason behind this requirement. Such rocks would be more subject to scour than the others in the blanket. The surface drag magnitude could be established experimentally by rigcing one individual rock with a systen of spring and levers or even an electrical system which would record its movement. Yet tinis approach would be dirfficult to correlate to the overall riprap blanket. Here again is the problem of extreme variation of sample condition where random sampling is recomended.

Attention is now directed back to the factors considered significant and measurable for the present study. Referring to the II-tems again, the following factors are required: a, b, c, d, h_{B}, $\overline{\mathrm{v}}$, and D . The first four terms have already been discussed since , they could be measured before flow tests in the flume could begin. The last three terms all concem the velocity jet at the boundary of the riprap surface.

The h_{B} tem represents the drop in head across the baffle. The energy on either side of the baffle is distributed as shom in the equation 3.13 for a unit width section.

$$
\begin{align*}
& \mathrm{y}_{1}+\frac{v_{1}}{2 g}=y_{2}+\frac{v_{2}^{2}}{2 g}+h_{1} \tag{3.13}\\
& \text { where } y_{1} \& y_{2}=\text { upstrean and downstream denth } \\
& v_{1} \& v_{2}=\text { upstrearn and downstrean velocity } \\
& h_{1}=\text { onerci loss at the bafle }
\end{align*}
$$

If the unit width areas of flow for unstrean and downstrean are assumed to be y_{1} and y_{2}, respectively, then the continuity equation
can be stated:

$$
\begin{equation*}
q=v_{1} y_{1}=v_{2} y_{2} . \tag{3.14}
\end{equation*}
$$

Combining equations 3.13 and 3.14 , and solving for v_{2},

$$
\begin{equation*}
v_{2}=\frac{c_{v} \sqrt{2 g\left(y_{1}-y_{2}\right)}}{\sqrt{1-\left(y_{2} / y_{1}\right)^{2}}} . \tag{3.15}
\end{equation*}
$$

The corresponding flow rate can then be stated as

$$
\begin{equation*}
q=\frac{c_{v} c_{c} A}{\sqrt{1-\left(y_{2} / y_{1}\right)^{2}}} \sqrt{2 g\left(y_{1}-y_{2}\right)} \tag{3.16}
\end{equation*}
$$

where c_{v} accounts for the energy loss, h_{1} c_{c} accounts for the contraction of the submerged jet.

The depths were measured with stilling well manometers attached to static ports located at the base of the riprap blanket. Standard hook type point gauges were used to measure the depth of the mater relative to the base of the riprap laver on the flume floor. The respective depth readings of the manometer wells were related by using a standard Wye Level to establish a level line. The distance from the flume floor was also established with a level rod accurate to 0.01 foot. Before continuing, it seems pertinent to discuss the aspect of accuracy as it pertajns to this research effort.

Validity of results in research depends heavily on the judgement shown in evaluating the accuracy of data measurenents: Extrene care must be exercised in some very delicate measurements such as those nade at the point of initial instabjility, while other measurerents may be by necessity, rather arbitrarily taken. For example, the stilling well gauges may be read to the nearest 0.001 foot. Water surface elevation for undulating flow may be good to the nearest
0.1 foot with some reservation for the time of recording. To add to the problem, the backwater effect must be observed. To accomplish a realistic set of data, the stilling well measurements were read at least before and after the velocity profile was taken and sometimes more frequently as the circumstance warranted. The observed trend can be describad as an asymptotic approach to a constant depth achieved upon the return to the steady state or equilibrium force condition. This return time for the present system was short enough that by the time a vertical velocity traverse of the jet was made, the flow system was sufficiently stabilized that the depth readings then recorded could be safely used. The difference $y_{1}-y_{2}$ was used as the parameter h_{B}.

The boundary of the submerged jet was made evident by air bubbles in the flow. The jet contained very fev if any air bubbles, whereas the turbulent portion above it contained many bubbles which stood out very well when illuninated by flood lamp (Figure 4 B). The fluid interface was traced on the glass wall in order to estimate how ruch jet contraction existed. The coefficients c_{V} and c_{c} were assumed to be conbined in a single term c. This coefficient, then, is equal to the ratio of the vertical dimension from the flume floor to the fluid interface, divided by the vertical distance of the baffle edge above the floor (Figure 1). The cross section was roughly plotted by eye using veritical measurements from the baffle edge to the rock surface at three inch intervals. Subtracting the mean riprap blanket thickness from the neight, of the contracted jet boundary gives the parameter D. This inforaation was all measured for the tests following: $10 \mathrm{D}, 11 \mathrm{~B}, 11 \mathrm{D}, 12 \mathrm{D}, 1 \mathrm{MB}, 15 \mathrm{~B}, 16 \mathrm{~B}, 19 \mathrm{~B}, 20 \mathrm{~B}$. If tests can be continued
over a longer time period, the initinl instability test and the final scour test will be run senarately, nausing between to allow the flume to drain so that the cross section of the initial instability surface can be recorded.

Using equation 3.16, the above measurements and the discharge measured by the Venturi meter, the total flow under the baffle can be checked. By integrating the vertical velocity traverse with a planimeter and dividing by D, the mean velocity of the jet is determined. If the area of the jet is assumed to be that at the recorded cross section and determined by planimeter, then the flow in the jet is represented by the equation

$$
\begin{align*}
& q_{j}=\bar{v}_{\text {mean }} A_{c}, \tag{3.17}\\
& \text { where } A_{c}=\text { contracted area of flow. }
\end{align*}
$$

The difierence of the total flow minus the jet flow should provide 2 fair estimate of the water moving through the riprap. This latter. flow should in turn give some indication of the relative stability according to size and shape categories.

The velocity profiles must be investigated next to see if a significant velocity exists. The velocity in the profiles represents a condition which results after the forces causing instability reach equilibriun. Consequently, the velocity recorded for both instability and final scour for each test represents a span of values from slightly less than instability velocity to slightly less than the final scour velocity. The mancuraments at each noint represent an. average value of the velocity head at that point. Velocity head fluctuations were highest at the boundaries, both at the riprap surface and at the water interface between the jet and the backwash,
from the subnorg a hydraulic jums domstren from the test section (Figure $4 B$). The shane or divergence angle of the upper and lower portions of the velocity traverse were affected by a change in the tailwater condition and by discharge variation. In atterapting to find a significant velocity most affecting scour, several tests were run for the same sise riprap at different discharges. Gurves from the different discharges are compared in Figures 19, 20, 21, 22, 2), and 25. Final scour was hard to dunlicate. As a result of this fact plus the different berm formation of scoured material downstream, the position of the curve is shifted with respect to the datum. Consequently, there is quite a difference in the shape and meximum velocity for the final scour curves. A good example is found in Tests 20 and 21 where the final scour was different due to the existence of a slightly higher differential head across the baffle in Test 20. This resulted in a higher maximum velocity than in Test 21. There was a slightly higher berm formed in Test 20 downstrean from the velocity probes elevating the velocity curve relative to the assumed datum. Both tests were conducted for conditions approaching the extreme capacity of the flume allowing little leeway for adjustrent. Irring boti tests, the dowstrean wheols (Figure 2) of the carriage holding the movable baffle were forced into the air by the tremendous force of the water on the baffle.

Special note should be made of the riprap thickness indicated in Figures 24-29. Theoretically, the thicinoss of the rock blanket should not sffect the velocity it takes to scour the blanket io a depth that is less than riorap depth. In the current study, however, the small material used to help block flow through the riprap was
not present. As a result, the prolile drag was not as creat and a higher velocity was required for movement (see Test 15A, Figure 24).

The use of the double probe in Tests 17 through 21 gives a more accurate picture of the ranid fluctuations at a given time. By spacing the two Prandtl tubes in such a way as to duplicate velocity measurements in the center region of the jet, a check was made on the data from each separate tube.

The velocity significant for the initial instability was difficult to establish. Point velocities selected for study included the maximun jet velocity, the mean jet velocity, and the velocity at an arbitrary point which usualiy was placed at an abrupt change in the velocity gradient. This last point was signified by the sign, 4 . Point plots based on maximum jet velocity and the so called arbitrary velocity best fit the envelope conditions show in Figures 32 and 33 when , the average diameter per category was used. (Tables 13 and 14)

Finally, in order to establish some model scale for size projections to larger riprap material, the II-terms must be developed further. Figure 37 gives the general variation of II-terms with the different sices and shapes tested.

AraIuabion Outline of Tests by Nurber Taken Tron Daily Revorts
1A. Good shape. Too low discharge for size of rock. Too much influence per rock on velocity profile. Difficult to duplicate scour test.

1B. Not plotted since velocity probe was not at the maximum contraction or throat of the jet.
$2 \AA$ and $2 B$. No Test $2 A$ was mun. Actual sequence follows: Tests 1 A and 1 B were run. Prandtl tube moved upstream to throat of jet. Discharge slowly built up to same as that of Test 1. Profjle 2B then taken over scour of Test 1B.

3A. Good correlation with similar test, 2B. Flow in rocks prevents profile from returning to zero at rock surface.

4A. Fairly good correlation with lower discharge in 3A. With higher discharge, larger baffle opening provided needed velocity, thius , not as dependent on each rock's position at the centerline:

4, B. Not run.
5A. Good profile.
5B. Trouble with rock berm near probe. Definitely affected shave of curve.
61. Good profile. Maxinum velooity reduced by low discharge.

6B. Needs more data points in critical gradient either side of maximum velocity.
71. Good profile. Good correlation with high discharge profile in Test 81.
73. Good profile. Some scatter for maximum velocities due to rock ${ }^{W} 4$ projecting into current directly under probe.

8A. Best profile for 3 to 6 inch cobbles for initial instability.
. 83. Good profile. iocks numbexed 1 and 11 interfered with probe reading in scour.

9A and 9B. Not plotted. Discharge too low even to move 6 to 9 inch cobbles for scour test.

10 A and 100. Cood agrement. Appears to be slight shirt in datum.
108 and 10D. Slightly higher maximum velocity on Test 10D. Test $10 B$ should have more measurements in region of neximum velocity, but good profile at riprap surface showing velocity gradient.

11A and 11C. Same as 10A and 100.
11B and 11D. Good agreement in maximum velocities.
$12 \mathrm{~A}, 13 \mathrm{~A}, 14 \mathrm{~A}, 15 \mathrm{~A}, 16 \mathrm{~A}, 17 \mathrm{~A}$. Good general agreement in all but Test 15 A. where initial scour data was questionable. lovable baffle would not raise high enough for twenty-two second-foot discharge resulting in some instability as this discharge was being obtained. , $12 \mathrm{~B}, 13 \mathrm{~B}, 1 \mathrm{AB}, 15 \mathrm{~B}, 16 \mathrm{~B}, 17 \mathrm{~B}$. Good agreement in all but lower discharge tests, numbers 16 B and 17 B . For Test 16 B , rock number 15 affected lower profile data.

18A and 19A. Slight shift in velocity magnitude. Also vertical translation of profile. Cause traced to difference in moved rock formation.

18 B and 193. Good agreement for final scour tests.
20A and. 21A. Largest material tested. Alrost too bic for flume. Profile shape definitely affected by individual rock position.

20 B and 213. Same as 201 and 21.

The choice of the diameter affected the plot in Figures 32 and 33 noticeably. The U.S. Amy Corps of mingineers' curves (Figure 35) are based on equivalent diameter as developed in equations 1.2 and 1.1. The weight used in finding the equivalent diameter is plotted parallel to the diameter. The diameter also represents the fifty per cent passing size of stone as measured in a sieve analysis. V_{m} represents the rean velocity and V_{S}, the velocity against the stone. The U.S. Dureau of Reclamation (Figure 34) recomends that... "most of the stone should be of the size indicated by the curve (14)." The U.S. Bureau of Reclamation also uses the equivalent diameter and weight for parallel ordinates. Ine velocity used is an estimated botton velocity. Andersson's curves (Figure 36) are based on the equations as outlined on pages 10 and 11. The curve enveloves of Figures 32 and 33 represent higher values of velocity for failure of a given sime. The writer believes this difference to be due to the lack of graded material filling the voids in the material tested. Since the curves obtained from other sources all represent some fom of. gradation, a true comparison could not be made until a sieve analysis was made twailable on a randon samble from each gradation represented.

Sstimates of discharge in the gravel proved to be difficult Differences in the estirated and actual effective cross section are believed to be the reason that, for instance, the discharge in the jet for Test 19 was greater than the total measured discharge in the flume (Tables 22 and 23). The discharge computed on the basis of equation 3.16 is too hich because the correct value of c_{v} was never
 the information (Tables 22 and 23). This program is found in the Appendix along with other combuter programs used to calculate shape characteristics and II-terms for physical features.

The plot of the pi terms proved indecisive. Nore rock sioes are needed to provide any sort of trend. For the angular material, the $v^{2} / d G$ temis vary inversely with the size since d or the equivalent diameter is in the denominator. The $\mathrm{v}^{2} / \mathrm{dG}$ varies directly with the riprap size. The depth of the jet is reduced as the velocity is increased by moving the baffle down while holding discharge constant. This term reflects the special conditions imposed on this specific syster used for tests and does not show promise for protatype applications. The term h_{D} / D varies directly with the material size. This trend is expected since the difierentiat head must increase , across the baffle as the velocity increases. This increase in h_{B} combined with the previously discussed decrease in D accounts for the increase in h_{B} / D. This tem, too, is restricted for use in the present study system of a submerged jet under a baffle. The II-terms representing the physical charactoristics found in Tables 15 through 20 are difficult to use in their present form. They represent values for each individual rock per randon sample per category. As such they must be Iumped together in such a way as to best represent the catecory in question. A fom of statistical analysis such as standard Geviation would sean apmomiate. This mert of data reduction is recomended for the jirst base of the overatl. stoudv of rimran. The term "model study" can only be applied to this study in a general sense in that the rock samole in the flume did not similate prototype riprap.

A basic research proiect of this troc is mercly a first sten in a series of studies aimed at improving riprap design criteria. The next step after the scale projection of size will be tests to determine ontimum gradation for the general case of a submerged jet such as used in this study. Next, a series of tests on different soecific situations would be approuriate. For example, the jet which occurs downstream from a chute with no energy dissipator other than riprap ©uld be studied by building a deck under the baffle and lowering the tailwater conditions to increase velocity. The velocities resulting should be high enough to provide data from the present level flume syster.

In conclusion, the writer recomnends that any approach to the problem of riprap should be made with a research program based on principles of randor selection of data. This data should be systematically analysed by methods of modern statistical techniques made. possible by the use of the new high speed digital computors. For the mass of data especially concerning the volocj.ty profiles and turbulent pressure fluctuations, a direct system of digitized tape recording as well as.line recordings would be very useful. Then data could be directly entered into the computor for analysis.

The present study is considered by the writer to be a meaningful beginning. The velocities in general are a valid representation of the conditions defined by the study. The initial instability velocities are belicyed to le more raliable than the Inal scour velocities. Nore rock sizes will need to be tested before this phase of the general study can be considered complete.

1. U. S. Arnyy, Office, Chief of Engineers. Shore Protection Planning and Design. Beach Erosion Board, Technical Report No. Li, U. S. Governent Printing Office, Washington, D. C., 1961. p. 392.
2. Searcy, James K_{0} Use of Riprap for Bank Protection. U. S. Department of Transportation, Bureau of Public Roads Fublication, Hydraulic Ingineering Circular No. 11, U. S. Goverment Printing Office, Jashington, D. C., June, 1967.
3. Galifornia Highway Department. Bank and Shore Protection in California Iighway Practice. Depariment of Fublic Works Pablication, Novenber, 1900. pp. 112-119.
4. Carey, Walter C. "Construction Problems in Comprehensive River Stabilization, " ASCE Water Resources Engineering Conference, Hobile, Alabana. Narch, 1965. pp. 25-27.
5. Naib, S. K. A. "Equilibriwn of Talus Blocks Downstrean of Stilling Basins," Water Power, Vol. 19, No. 10, October, 1967. pp. 407-410.
6. U. S. Amy Fingineer Waterways Experiment Station, CE. Investigation of Filter Reouirements far Underdrains. Vicksburg, Nississippi, Decenber, 1941.
7. Karpoff, K. P. "The Use of Laboratory Tests to Develop Design Criteria for Protective Filters," Barth Laboratory Report No. $5 N-425$. Bureau of Reclamation, United States Department of the Interior, Denver, Colorado, June 20, 1955.
8. Krumbein, W. C. WReasurenent and Geological Significance of Shape and Roundness of Sedimentary Particles," Journal of Sedinentary Petrology, Vol. 11, No. 2, 19Li. pp. 64-72.
9. Navies, $\mathrm{F}_{0} \mathrm{~T}_{0}$ and Lrushey, I\% M. "A Reapmaisal of the Begjmings of Bed lovement-Competent Velocity," Proceedings, International Association for Hydraulic Structures Research, Stockholm, Sweden, 1948.
10. Wadell. Hakon. "Volume, Shape, and Houndness of Rock Particles," Journal of Geology, Vol. 140, 1232. Pp. 1143-451. "Sphericity and Roundness of Rock Particles," Joumal of Geolacy, Vol. 111, 1933. गु. 310-331.
 Geology, Vol. 133, 1935. pp. 250-250.
11. U. S. Army, Office, Chief of Mngineers. Criteria for Graded Stone Riorap Channel Protection. Draft Report, U. S. Government Printing office, Washington, I_{E}. C., 20 April, 1966. pp. 1-12.
12. Berry, Ne K. "The Start of Bed Load Kovenent." Thesis, Graduate School, University of Colorado, 1.948.
13. Etcheverry, B. A. Irrigation Practice and Engineering, 1st Edition, Volune II. New York; KcGraw-Hill Book Company, 1915. p. 56.
14. Peterka, A. J. Hrdraulic Desien of Stilline Ensins and Bnergy Dissimatons. USBZVater Rescurces Technical Fublication, Engincering Monograph No. 25. U. S. Govemment Printing Office, Washington, D. C., 1964.
15. Airy, Wilfred, discussion of paper, "On Rivers Flowing into Tideless Seas, Illustrated by the River Tiber," by William Shelford. Proceedings, Institution of Civil Engineers, Vol. 82, 1885. P. 25.
16. Isbash, S. V. "Construction of Dams by Depositing Rock in Running Tater," Transactions, Second Congress on Large Dams, Vol. 5, 1936. pp. 123-136.
17. Campbell, Frank B. Hydraulic Design of Rock Riprain. Miscellaneous Paper No. 2-777. U. S. Amy Engineor, Faterways mperiment Station, Vicksburg, Mississippi, Febmary, 1966.
18. Andersson, Soren. "Stability of Amour Layer of Uniform Stones in Punning Water," Sartryck Och Preliminara Rapoorter, No. 6, Swedish (ieotechnical Institute, Stockiolm, Sweden, 1964. pp. 21-27.
19. U. S. Arry Ingineer Waterways Experinent Station, CE, Hydraulic Design Griteria. Vicksburg, Nississipoi, 1957. Vol. 2, pp. 712-1.
20. Hiranandani, H 。 G. A Visit to Hydraulic Research Laboratories in the United States, United Kincon and France. Ministry of Imrigation and Power, 20 Sombay Road, Foona, Government of India, 1959. pp. 97, 154.
21. Joonejo, Nazir Ahmad. "Hovenent of Stones Under Mlowing Water." Thesis, Gractuate School, University of Colorado, 1966.
22. Carlson, $\mathrm{E}_{\text {s }} \mathrm{J}_{0}$ "Bafme Gate Fethod for Cleaning Salmon Beds in Canals, ${ }^{\text {H }}$ KII Congress of International Association for Hydraulic Research (JAHR), Septamber, 1967, Fort Collins, Colorado. Vol. 3. pro 453-4,62.
23. Vonsard, John M, Musrl Mechanies, lith Thition. Now York; John willey \& Sons, Ince, July, 1965. p. 197.

2h. Streeter, Victor L. Fluid Mechanics, lith Edition. New York; KeGraw-Hill Book Company, 1966. pp. 183-20k.
25. U. S. Bureat of Neclanation. Study of Heimit and Frequency of Waves Acting on Tailrace Slopes and Riverbanks During 1949 Flood Season, Grand Coulee Dan, Columbia Basin Project. Hydraulic Laboratory Report No. $\overline{336}$, U.S. Governnent Printing Office, Washington, D. C. November 28, 1952.

TABLE 1

PHYSICAL CHARACTERISTICS OF RIPRAP 3/4 TO 1 1/2 INCH COBBLES

005	REM	AXIAL			T	\checkmark OL
007	REM	A	8	C	LBS	ML
010	dATA	2.125,	1.875,	1.125,	-24,	44
020	data	2.125,	1.875,	. 875 ,	. 17	30
030	dATA	2.250,	1.625,	.625,	. 14,	25
040	data	2.500,	1.625,	. 750,	-16,	28
050	dATA	1.250,	1.000,	. 750,	. 04	9
060	dATA	2.000,	1.500,	1.000,	16	30
070	data	2.125,	1.375,	1.125,	- 17	30
080	data	1.875,	1.750,	1.125,	-20,	34
090	data	2.125,	1.250,	1.125,	14	25
100	data	1.500,	1.250,	1.125,	. 09	5
110	data	1.375,	1.250,	1.000,	.08,	14
120	data	1.625,	1.750,	1.000,	. 11,	20
130	data	1.250,	1.000,	. 500,	. 03	4
140	data	2.000,	1.625,	. 625,	.13,	22
150	data	1.125,	1.000,	. 750 ,	.04;	7
160	data	1.375,	1.000,	. 875 ,	. 05 ,	10
170	data	1.750,	1.250,	. 625.	.07,	6
180	dATA	1.875,	1.625,	1.000,	.19,	27
190	data	2.500,	1.625,	1.000,	.17,	30
0	deta	2.000,	1.750,	. 750 ,	. 18,	27
210	DATA	1.375,	1.000,	1.000,	07,	11
220	data	2.125,	1.500,	1.000,	. 18,	28
230	data	1.875,	1.375,	. 750 ,	.10,	22
240	data	2.250,	1.625,	1.125,	-22.	41
250	data	1.375,	1.250,	1.000,	.09.	8
260	dATA	1.500,	1.000,	1.000,	.07,	11
270	data	2.250,	1.375,	1.000,	.17,	34
280	data	2.000,	1.500,	1.250,	.17,	30
290	dATA	2.000,	1.500,	. 875 ,	.13,	24
300	dATA	1.875,	1.500,	1.125,	. 16 ,	27
310	dATA	2.000,	1.625,	. 875.	.11,	23
320	data	2.625,	1.500,	1.000,	.18.	
330	data	1.500,	1.375,	1.000,	.09,	18
340	dATA	2.125,	1.500,	1.250,	.19.	39
350	deta	2.375,	1.500,	1.125,	. 16	28
60	dATA	2.	1.5	1.375,	. 25,	44

TABLE 2

PHYSICAL CHARACTERISTICS OF RIPRAP $11 / 2$ TO 3 INCH COBBLES

TABLE 3

PHYSICAL CHANACTHRISTICS UF RIPRAP
A. 3 TO 6 INCH CUBDLE'S

005	REM	AXIAL	DIMENSIONS	(IN)	WEIGHT VOLUME	
007	REM	A	B	C	LBS	ML

B. 6 TO 9 INCH CCBBLES

00	REM	AXIAL	UENSI	(IN)		
007	REM	A	B	C	LBS	ML
010	data	11.750,	10.000,	4.500,	23.08,	3840
020	data	11.500,	8.000,	5.500,	25.02,	4230
030	data	9.250,	8.750,	5.125,	21.01,	3480
040	data	9.125,	8.750,	5.875,	23.75,	3840
050	data	8.500,	6.750,	5.250,	13.44,	2380
060	dATA	11.000,	7.500,	5.500,	23.69	3950
070	data	11.500,	8.500,	5.625,	23.46,	14
080	data	8.750,	7.750,	6.500,	20.42,	445
090	data	9.500,	7.875,	4.875,	14.75,	2425
100	DATA	9.250,	7.875,	4.000,	12.65	09
110	deta	11.375,	, 8.750,	4.500,	19.72,	3340
120	DATA	11.625,	, 7.875,	4.000,	15.84,	2730
130	DITA	10.875,	, 9.375,	4.500,	19.62,	3340
140	Data	10.750,	, 6.625,	4.625,	15.19,	253
150	Data	8.000,	, 7.000,	6.625 ,	15.68,	2620
160	DATA	10.750,	, 5.625,	4.000,	12.47,	2060
170	Data	10.375,	7.375,	5.125,	13.61,	2260
180	DATA	10.750,	, 6.750,	5.875,	4.	313

TABIE 4

PHYSICAL CHAHACTERISTICS OF RIPRAP 1 1/2 TO 3 INCH ANGULAR RIPRAP

	R	AXIAL DIMENSIONS (IN)			WT	H DF	L VOL
007	REM	A	B	C	LBS	H1	H2
010	data	4.375,	2.500,	2.000,	1.23,	1.910,	1.925
020	DATA	4.750,	3.000,	2.000,	1.46,	1.910,	1.926
030	DATA	6.000,	2.000,	1.750,	1.35,	1.910,	1.926
040	dATA	4.250,	2.625,	1.000,	. 54,	1.909,	1.916
050	data	5.500,	3.000,	2.750,	1.72,	1.909,	1.925
060	data	6.000,	2.875,	2.875,	1.94,	1.908,	1.928
070	dATA	5.000,	2.750,	2.750,	1.38,	1.908,	1.920
080	dATA	5.500,	3.250,	1.500,	1.00,	1.907,	1.918
090	dATA	5.000,	3.000,	2.750,	1.78,	1.907,	1.926
100	dATA	4.500,	3.000,	1.625,	1.50,	1.907,	1.922
110	data	4.750,	2.875,	2.500,	1.28,	1.906,	1.919
120	dATA	5.500,	3.750,	1.250,	1.26,	1.906,	1.919
130	DATA	6.250,	2.750,	2.500,	2.09,	1.906,	1.927
140	dATA	6.250,	3.000,	2.750,	2.24,	1.906,	1.928
150	dATA	4.500,	3.500,	2.500,	1.27,	1.905,	1.918
160	dATA	4.000,	3.250,	1.500,	-90,	1.904,	1.917
170	DATA	6.000,	3.000,	2.500,	2.02,	1.904,	1.924
180	DATA	6.500,	2.750,	2.000,	2.05,	1.904,	1.927
190	DATA	4.500,	2.500,	2.500,	1.9.4,	1.904,	1.919
200	DATA	5.000,	2.250,	1.625,	1.43,	1.904 ,	1.919
210	data	4.000,	3.000,	3.000,	1.30,	1.903,	1.918
220	DATA	5.000,	2.375,	1.250,	. 54.	1.903,	1.909
0	data	6.250,	3.500,	1.500,	1.42,	1.903,	1.918
240	dATA	5.500,	2.500,	2.500,	2.63,	1.903,	1.920
250	dATA	4.750,	3.750,	2.000,	1.35,	1.902,	1.916
260	data	7.750,	3.500,	1.750,	2.01,	1.902,	1.930
270	dATA	5.500,	3.500,	1.750,	1.75,	1.902,	1.922
280	data	5.250,	3.500,	2.250,	1.87,	1.901,	1.92 .1
290	data	4.500,	2.750,	2.625,	1.80,	1.901,	1.920
300	dATA	8.250,	2.500,	1.750,	1.56,	1.901,	1.918
310	dATA	5.750,	3.000,	2.500,	1.81,	1.900,	1.920
320	data	6.500,	3.250,	2.000,	2.08,	1.900,	1.922
330	data	5.500,	2.875,	2.250,	2.15,	1.900,	1.923
340	data	4.500,	3.500,	1.250,	1.06,	1.900,	1.910
350	data	5.250,	1.750,	1.375,	. 97.	1.900,	1.910
360	dATA	5.250,	3.250,	1.500,	1.11,	1.900,	1.911
370	dATA	4.500,	3.000,	2.250,	1.43,	1.899,	1.914
380	dATA	5.000,	3.500,	2.000,	1.33,	1.399,	1.913
390	data	5.000,	2.625,	2.500,	1.28,	1.899,	1.913

TABLE 5

PHYSICAL CHARACTERISTICS OF RIPRAP 3 TO 6 INCH ANGULAR

005	REM	L	DIMENSIONS (IN)	WT	VøL
07	REM	A	B C	LBS	
10	DATA	8.750,	.000, 3.750,	.06,	80
020	data	5.000,	4.250, 2.000,	.62,	250
030	data	7.000,	4.250, 3.750,	.94,	880
0	data	9.000,	4.000, 3.250,	78,	16
5	data	5.500,	3.500, 3.250,		300
060	data	9.250,	5.750, 2.500,	5.10,	860
0	data	7.500,	5.250, 3.37.5,	5.86,	000
080	data	7.000,	.500,	4.55,	6
090	data	7.000,	4.000, 2.000,	.08,	20
100	dATA	5.000,	4.000, 3.250,	.30,	40
110	DATA	5.000,	4.375, 4.000,	. 01	
120	data	5.000,	3.875, 2.500,	. 46	200
130	dATA	9.375,	5.000, 4.000,	8.05,	1310
140	data	5.500,	5.375, 3.125,	4.01,	560
150	DATA	.000,	.750,	8,	00
160	data	7.125,	4.625, 3.750,	4.51,	50
170	data	7.125,	6.000, 2.000,	3.59,	70
180	data	8.000,	4.625, 3.375,	0,	840
190	data	5.375,	.500, 2.500,	.20,	
200	data	6.750,	4.750, 3.000,	4. 47,	30
210	data	9.000,	4.500, 2.750,	.02,	
220	DATA	. 500,	4.625, 3.875,	-	
230	data	5.375,	4.75, 3.250,	3.62,	
240	dATA	5.500,	3.000, 2.500,	2.77,	440
50	data	5.250,	4.000, 4.000,	.95,	
260	data	7.000,	5.125, 3.250,	. 76,	
270	dATA	6.500,	4.500, 3.875,	3.74,	60
280	data	4.750,	3.125, 3.125,	1.88,	2
290	data	6.000,	4.375, 3.375,	3.87,	
300	data	7.500,	5.000, 3.500,	5.63,	
310	data	5.750,	3.000, 2.000,	1.82,	
320	data	6.000,	3.750, 2.750,	$2 \cdot 95$	80
330	data	6.000,	5.000, 3.500,	3.04,	
340	data	5.750,	4.000, 3.750,	5.31,	
350	data	5.375,	3.000, 1.500,	-94,	180
360	DATA		5.500, 3.875,	6.58,	

TABLE 6

PHYSICAL CHARACTERISTICS OF RIPRAP 6 TO 9 INCH ANGULAR

SHAPE CHARACTERISTICS

$3 / 4$ TO 1 1/2 INCH COBBLES

| ZING CLASSIFICATIØNS: PER | CENT PER CATEGØRY | | |
| :---: | :---: | :---: | :---: | :---: |
| I | II | | III |
| DISK | SPHERICAL | BLADE | RØDLIKE |
| 8.33333 | 16.6667 | 41.6667 | 33.3333 |

R OCK	ZING	BC/Ar2	V OL	
NUMBER	CLASS	SPHERICITY	CU FT	
1	III	. 4671.28	1.55364	E-3
2	III	. 363322	1.05930	E-3
3	III	-200617	8.82750	E-4
4	I	. 195	9.88680	E-. 4
5	IV	. 48	3.17790	E-4
6	II I	. 375	1.05930	E-3
7	II	-34256́1	1.05930	E-3
8	III	. 56	1.20054	E-3
9	II	- 311419	8.82750	E-4
10	IV	. 625	5.29650	E-4
11	IV	. 661157	4.94340	E-4
12	III	. 662722	7.06200	E-4
13	III	- 32	1.41240	E-4
14	III	. 253906	7.76820	E-4
15	IV	. 592593	2.47170	E-4
16	IV	. 46281	3.53100	E-4
17	III	-255102	2.11860	E-4
18	III	. 462222	9.53370	EZ
19	I	- 26	1.05930	E-3
20	III	. 328125	9.53370	E-4

TABLE 7B

SHAPE CHARACTERISTICS
$3 / 4$ TO $11 / 2$ INCH COBBLES (CON'T)

RGCK	ZING	BC/AT2	VOL
NUMBER	CLASS	SPHERICITY	CU FT
21	IV	.528926	$3.88410 \mathrm{E}-4$
22	III	.33218	$9.88680 \mathrm{E}-4$
23	III	.293333	$7.76820 \mathrm{E}-4$
24	IV	.361111	$1.44771 \mathrm{E}-3$
25	IV	.661157	$2.82480 \mathrm{E}-4$
26	II	.444444	$3.88410 \mathrm{E}-4$
27	II	.271605	$1.20054 \mathrm{E}-3$
28	IV	.46875	$1.05930 \mathrm{E}-3$
29	III	.328125	$8.47440 \mathrm{E}-4$
30	IV	.48	$9.53370 \mathrm{E}-4$
31	III	.355469	$8.12130 \mathrm{E}-4$
32	I	.217687	$1.41240 \mathrm{E}-3$
33	IV	.611111	$6.35580 \mathrm{E}-4$
34	IV	.415225	$1.37709 \mathrm{E}-3$
35	II	.299169	$9.88680 \mathrm{E}-4$
36	II	.365651	$1.55364 \mathrm{E}-3$

```
SPHERICITY CLASSIFICATIgN = [C*B]/A`2
PERCENT--0.0 TO 0.1 = 0
PERCENT--0.1 TD 0.2 = 2.77778
PERCENT -0.2 TO 0.3 = 22.2222
PERCENT - 0.3 TD 0.4 = 30.5556
PERCENT - 0.4 T0 0.5 = 22.2222
PERCENT - 0.5 TO 0.6 = 8.33333
PERCENT - 0.6 TO 0.7 = 13.3889
PERCENT - 0.7 T0 0.8 = 0
PERCENT - 0.8 TO 0.9 = 0
PERCENT - 0.9 TO 1.0 = 0
```


TABLE 8A

SHAPE CHARACTERISTICS $11 / 2$ TO 3 INCH COBBLES

ZING CLASSIFICATIØNS: PER CENT PER CATEGØRY

I			
DISK	II	III	IV
8.33333	SPHERICAL	BLADE	RØDLIKE
	16.6667	55.5556	19.4444

R OCK	ZING	BC/AT2	VOL	
N UMBER	CLASS	SPHERICITY	CU FT	
1	IV	-428819	3.35445	E-3
2	III	. 358796	9.35715	E-3
3	III	- 332222	4.76685	E-3
4	III	- 30839	2.18922	E-3
5	II	- 340278	2.82480	E-3
6	- III	. 356653	4.23720	E-3
7	IV	. 520833	4.30782	E-3
8	II	- 288462	2.61294	E-3
9	IV	. 363636	2.64825	E-3
10	III	. 292899	. 003531	
11	II	- 388889	3.17790	E-3
12	III	. 281065	3.70755	E-3
13	II	. 28125	5.11995	E-3
14	III	. 304688	8.12130	E-3
15	1	. 252551	3.35445	E-3
16	I	. 143673	3.70755	E-3
17	III	. 425	2.25984	E-3
18	IV	.578512.	3.35445	E-3
19	III	- 3	1.83612	E-3
20	III	. 328125	7.41510	E-3

TABLE 8B (CONTINUED)

SHAPE CHARACTERISTICS
$11 / 2$ TO 3 INCH COBBLES

ROCK	ZING	BC/AT2	VOL
NUMBER	CLASS	SPHERICITY	CUFT
21	III	.340136	$2.11860 \mathrm{E}-3$
22	III	.166205	$5.64960 \mathrm{E}-3$
23	III	.34375	3.10728
24	III	.3456	4.23720

```
SPHERICITY CLASSIFICATIGN = [C*B]/A`2
PERCENT--0.0 TO 0.1 = 0
PERCENT--0.1 TO 0.2 = 5.55556
PERCENT -0.2 T0 0.3 = 25
PERCENT -0.3 TO 0.4 = 44.4444
PERCENT - 0.4 TO 0.5 = 13.8889
PERGENT - 0.5 TO 0.6 = 8.33333
PERCENT - 0.6 T0 0.7 = 2.77778
PERCENT - 0.7 T0 0.8 = 0
PERCENT - 0.8 T0 0.9 = 0
PERCENT - 0.9 TO 1.0 = 0
```


TABLE 9A

SHAPE CHARACTLRISTICS 3 TU 6 INCH CUBBLES


```
SPHERICITY CLASSIFICATION = [C*B]/A^2
PERCENT--0.0 TO 0.1 = 0
PERCENT--0.1 T0 0.2 = 12.5
PERCENT -0.2 TO 0.3 = 43.75
PERCENT -0.3 TO 0.4 = 25
PERCENT - 0.4 TG 0.5 = 12.5
PERCENT - 0.5 T0 0.6 = 0
PERCENT - 0.6 TG 0.7 = 6.25
PERCENT - 0.7 T0 0.8 = 0.
PERCENT - 0.8 T0 0.9 = 0
PERCENT - 0.9 T@ 1.0 = 0
```


TABLE 9B

SHAPE CHARACTERISTICS 6 TU 9 InCH CUBBLES


```
SPHERICITY CLASSIFICATIGN = [C*B]/A`2
PERCENT--0.0 T0 0.1 = 0
PERCENT--0.1 T0 0.2 = 5.55556
PERCENT -0.2 T0 0.3 = 11.1111
PERCENT -0.3 TØ 0.4 = 50
PERCENT - 0.4 T0 0.5 = 11.1111
PERCENT - 0.5 TO 0.6 = 5.55556.
PERCENT - 0.6 TO 0.7 = 11.1111
PERCENT - 0.7 TQ 0.8 = 5.55556
PERCENT - 0.8 T0 0.9 = 0
PERCENT - 0.9 T\varnothing 1.0 = 0
```

TABLE $10 A$
SHAPE CHARACTERISTICS
$11 / 2$ TO 3 INCH ANGULAR
ZING CLASSIFICATIGNS: PER GENT PER CATEGgRY

I	II	III	IV
DISK	SPHERICAL	BLADE	RØDLIKE
28.2051	53.8462	12.8205	5.12821

R OCK	ZING	$\mathrm{BC} / \mathrm{A} \uparrow 2$	VOL	
N UMBER	CLASS	SPHERICITY	CU FT	
1	II	-261224	1.00629	E-2
2	I	. 265928	1.07337	E-2
3	II	9.72222 E-2	1.07337	E-2
4	I.	-145329	. 004696	
5	II	. 272727	1.07337	E-2
6	II	. 229601	1.34171	E-2
7	II	- 3025	8.05028	E-3
8	I	. 161157	7.37943	E-3
9	II	. 33	1.27463	E-2
10	I	. 240741	1.00629	E-2
11	II	- 31856	8.72114	E-3
12	III	. 154959	8.72114	E-3
13	II	. 176	. 014088	
14	II	- 2112	- 1.47589	E-2
15	IV	-432099	8.72114	E-3
16	III	. 304688	8.72114	E-3
17	II	-208333	1.34171	E-2
18	II	-130178	1.54297	E-2
19	II	- 308642	1.00529	E-2
20	IT	- 14625	1.00629	E-2

TABLE 10B (CONTINUED)
SHAPE CHARACTERISTICS
$11 / 2$ TO 3 INCH ANGULAR

R ØCK	ZING	BC/Å2	Vol
N UMBER	CLASS	SPHERICITY	CU FT
21	IV	. 5625	$1.00629 \mathrm{E}-2$
22	I	. 11875	$4.02514 \mathrm{E}-3$
23	I	. 1344	1.00629 E-2
24	II	-206612	$1.14046 \mathrm{E}-2$
25	III	- 33241	. 009392
26	I	. 101977	. 018784
27	I	-202479	$1.34171 \mathrm{e}-2$
28	I	. 285714	1.34171 E-2.
29	II	. 356481	$1.27463 \mathrm{E}-2$
30	II	$6.42792 \mathrm{E}-2$	$1.14046 \mathrm{E}-2$
31	II	- 226843	1.34171 E-2
32	I	. 153846	$1.47589 \mathrm{E}-2$
33	II	-213843	$1.54297 \mathrm{E}-2$
, 34	III	-216049	$6.70857 \mathrm{E}-3$
35	II	8.7.3016 E-2	$6.70857 \mathrm{E}-3$
36	I	. 176871	$7.37943 \mathrm{E}-3$
37	II	. 333333	$1.00629 \mathrm{E}-2$
38	III	. $2 \cdot 3$. 009392
39	II	- 2625	. 009392

```
SPHERICITY CLASSIFICATION = [C*B]/Å`Z
PER GENT - 0.0 TO 0.1 = 7.69231
PER CENT - 0.1 TO 0.2 = 23.2051
PER CENT - 0.2 TO 0.3=38.4615
PER GENT - 0.3 TO 0.4 = 20.5128
PER CENT - 0.4T0 0.5 = 2.5641
PER CENT - 0.5 TG 0.6 = 2.5641
PER CENT - 0.6 TO 0.7 = 0
PER CENT - 0.7 TO 0.8=0
PER CENT - 0.8 TO 0.9=0
PER CENT - 0.9 TG 1.0=0
```

TABLE 11A

SHAPE CHARACTERISTICS

3 TO 6 INCH ANGULAR
ZING CLASSIFICATIGNS: PER CENT PER CATEGGRY

I	II	III	IV
DISK	SPHERICAL	BLADE	RODLIKE
13.8889	38.8889	25	22.2222

TABLE 11B(CONTINUED)

SHAPE CHARACTERISTICS 3 TO 6 INCH ANGULAR

R ØCK
NUMBER
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

ZING	BC/Ar2
CLASS	SPHERICITY
I	.152778
II	.318611
IV	.534343
II	.247934
IV	.580499
III	.339923
IV	.412722
II	.432825
IV	.410156
II	.311111
I	.181474
II	.286458
IV	.486111
IV	.453686
I	.15576
II	.23615

VOL
CU FT $2.54232 \mathrm{E}-2$
3.38976 E-2
$1.97736 \mathrm{E}-2$
$1.55364 \mathrm{E}-2$
$1.87143 \mathrm{E}-2$
2.93073 E-2
2. $33046 \mathrm{E}-2$
1.12992 E-2
2. 29515 E-2
$3.24852 \mathrm{E}-2$
$1.23585 \mathrm{E}-2$
1.69488 E-2
$2.57763 \mathrm{E}-2$
$3.10728 \mathrm{E}-2$
6.35580 E-3
$3.60162 \mathrm{E}-2$

```
SPHERICITY CLASSIFICATION = [C*B]/A\imath2
PERCENT--0.0 TO 0.1 = 0
PERCENT--0.1 TO 0.2 = 16.6667
PERCENT -0.2 TG 0.3 = 22.2222
PERCENT -0.3 TG 0.4 = 33.3333
PERCENT - 0.4 T0 0.5 = 13.8889
PERCENT - 0.5 TO 0.6 = 11.11111
PERCENT - 0.6 TO 0.7 = 2.77778
PERCENT - 0.7 TO 0.8=0
PERCENT - 0.8 T0 0.9 = 0
PERCENT - 0.9 TO 1.0 = 0
```

TABLE 12A
SHAPE CHARACTERISTICS 6 TO 9 INCH ANGULAR

ZING CLASSIFICATIDNS: PER CENT PER CATEGDRY

I	II	III	IV
DISK	SPHERICAL	BLADE	RODLIKE
5.55556	27.7778	13.8889	52.7778

R वCK	ZING	BC/A*2	V ØL
N UMBER	CLASS	SPHERICITY	CUFT
1	II	- 3364	- 279077
2	IV	. 408163	-13283
3	IV	. 4292	- 24285
4	IV	- 350911	. 179119
5	I	. 268647	-181131
6	II	- 306777	. 191865
7	III	. 505003	. 191865
8	IV	. 510381	-138197
9	IV	. 792549	- 214674
10	IV	- 395703	-15631
11	IV	. 512397	-193207
12	IV	- 402883	-165702
13	III	- 340741	. 186498
14	IV	- 453616	-118742
15	II	- 214249	- 145576
16	II	-274921	- 314632
17	II	- 327168	-243521
18	IV	. 763158	-231446
19	II	-279952	. 116729
20	IV	-442151.	-17241

TABLE 12B (CONTINUED)
SHAPE CHARACTERISTICS
6 TO 9 INCH ANGULAR

ROCK	ZING
NUMBER	CLASS
21	IV
22	IV
23	IV
24	IV
25	III
26	IV
27	II
28	IV
29	II
30	IVI
31	II
32	IV
33	

BC/At2
SPHERICITY
. 446231
. 622222
. 385614
.531636
.233918
. 444444
.713668
. 31238
.575
. 76
. 232861
.634039
. 400549

- 277686
- 5775
.186057

VOL
CU FT

- 268343
- 235471
- 130817
.175094
. 17979
.157651
- 124779
- 193878
. 160335
- 188511
- 188511
. 149601
- 129475
- 189853
- 122096
. 173081

SPHERICITY CLASSIFICATION $=[C \div B] / A \uparrow 己$
PER CENT - 0.0 TO $0.1=0$
PER CENT - 0.1 T0 $0.2=2.77778$
PER CENT - 0.2 TO $0.3=19.4444$
PER GENT - 0.3 TO $0.4=22.2222$
PER CENT - 0.4 T0 $0.5=22.2222$
PER CENT - 0.5 TG $0.6=16.6667$
PER CENT - 0.6 TO $0.7=5.55556$.
PER CENT - 0.7 TQ $0.8=11.1111$
PER CENT - $0.8 \mathrm{TO} 0.9=0$
PER CENT - $0.9 \mathrm{TG} 1.0=0$

TABLE 13
VELOCITIES AT SIGNIFICANT POINTS
Cobbles

T	Size Category	I eximum Boundary Velocity (fos)	Distance from Daturn (ft)	at d(jn) from rock suriace	d from Datum (ft)		Distance from Datu: (ft)	Boundary Veloci.t; (fos)

22 cf's
$\begin{array}{llllllll}11 \mathrm{a} \frac{3}{4} n \leq \mathrm{d} \leq 1 \frac{1}{2} \mathrm{n} & 6.4 & 1.18 & 5.1 & 0.0625 & 5.6 & 0.28 & 5.8 \\ 11 \mathrm{~b} \frac{\mathbf{3}}{\mathbf{4}} \| \leq \mathrm{d} \leq 1 \frac{2}{2} n & 7.1 & 0.78 & 6.4 & 0.125 & 6.7 & 0.19 & 6.3\end{array}$

21 efs
5 a. $3^{11} \leq d \leq 6$

- 8.1 .

92
7.70 .25
$\begin{array}{lll}7.6 & 0.18 & 6.5 \\ 8.8 & 0.02 & 7.1\end{array}$
20.6 cfs

14 cfs
$\begin{array}{llllllll}l i a & 3^{\prime \prime} \leq d \leq 6 " & 9.0 & 0.43 & 3.5 & 0.25 & 8.4 & 0.13\end{array}$
14 cis
$\begin{array}{rrrrlrrr}7 \mathrm{a} 6^{\prime \prime} \leq d \leqslant 9^{\prime \prime} & 9.0 & .20 & 6.4 & 0.5 & 9.0 & 0.12 & 5.0 \\ 7 \mathrm{~b} 6^{n} \leqslant \mathrm{~d}^{\prime \prime}=9^{\prime \prime} & 10.0 & .33 & 10.0 & 0.75 & 10.0 & 0.23 & 6.0\end{array}$
11.6 cfs

6a $6^{\prime \prime} \leqslant d \leqslant 9$ "
ќb $6^{\prime \prime}: \alpha^{\prime \prime}=9$ "
8.4 . 1
. 19
$1.5 \cdot 0.5$
8.1
0.19
5.1
7.5 cfs
$1 a$
7.5 cfs
$\begin{array}{lllllll}20 & 31=0 \mathrm{C}=611 & 8.0 & -.10 & 8.0 & 0.5 & 8.0\end{array}$
7.5 cis
$\begin{array}{llllllll}\text { 3a } 3^{\prime \prime} \leq d \leq 6^{\prime \prime} & 8.2 & 0.00 & 5.3 & 0.25 & 8.2 & 0.00 & 6.0 \\ \text { 3b } 3^{\prime \prime}=d^{\prime \prime}=6 & 7.5 & -.18 & 7.5 & 0.5 & 7.5 & -.18 & 6.0\end{array}$

TABLE 15A
 $3 / 4$ TO I $1 / 2$ INCH COBBLES

PIE TERMS FOR PHYSICAL CHARACTERISTICS GF RIPRAP
WHERE DIA=DIAMETER OF SPHERE OF WEIGHT EQUAL TD RDCK SAMPLE
PIE I IS RATID OF MEAN AXIS DIM AND DIA DF $=W T$ SPHERE
PIE 2 IS RATIØ OF MEAN AXIS DIM AND SIGNIFICANT DEPTH
PIE 3 IS RATIO OF ROCK VOLUME AND ABG RECTANGULAR SDLID
ROCK DIA PIE 1 PIE 2 INCHES
1.00821
6.10119

PIE 3
N UMBER
$1.17489 \quad 1.02847$
1.30645 . 1.11626
. 847269
1.08191
1.02564
. 932532
1.02767
1.00453
1.12375
1.07845
1.56749
1.07527
1.51045
. 956942

1. 13101
.974343
. 556863
.56199
$\begin{array}{ll}5.35714 & .510458 \\ 4.6131 & .433889\end{array}$
4.31548 . 497
$5.20833 \quad .429121$
3.27381 . 3905
$5.05952 \quad .660847$
3.42262 . 506204
$3.86905 \quad .507 .143$
$4.31548 \quad \cdot 267772$
$5.35714 \quad .540693$
$6.10119 \quad .450577$
$5.35714 \quad .62759$

TABLE 15 B
$3 / 4$ TO $11 / 2$ INCH COBBLES
CONTINUED

PIE TERMS FØR PHYSICAL CHARACTERISTICS OF RIPRAP

TABLE 16 A

2. $1 / 2$ TO 3 INCH COBBLES

PIE TERMS FOR PHYSICAL CHARACTERISTICS OF RIPRAP
WHERE DIA=DIAMETER ØF SPHERE OF WEIGHT EQUAL Tø RØCK SAMPLE
PIE 1 IS RATIØ ØF MEAN AXIS DIM AND DIA OF = WT SPHERE
PIE 2 IS RATIØ øF MEAN AXIS DIM AND SIGNIFICANT DEPTH
PIE 3 IS RATIO OF ROCK VOLUME AND ABC RECTANGULAR SOLID
R DCK DIA PIE 1 PIE

INCHES
2.25297
3.17672
2.5479
1.38889
2.04698
2. 39175
2.41531
2.03061
2.0631
2.25297
2. 1549
2.2925
2.57898
2.88013
2. 22583
2.2925
1.88889
2. 19801

PIE 3

1.03567	11.6667	.500641
1.07553	17.0833	.49454
1.07932	13.75	.470168
1.01471	9.58333	.67818
1.05847	10.8333	.531293
1.04526	12.5	.534018
1.01781	12.2917	.529345
1.10804	11.25	.455969
.989612	10.2083	.605114
1.05416	11.875	.606838
1.04413	11.25	.522992
.999635	11.4583	.664009
1.06631	13.75	.491515
1.01269	14.5833	.719672
1.06702	11.875	.535318
1.18139	13.5417	.5325
1.03677	9.79167	.588048
1.06157	11.6667	.481786
1.00192	8.95833	.676867
1.02754	14.5833	.610157

TABLE 168 (CONTINUED)

$11 / 2$ TO 3 INCH COBBLES
PIE TERMS FOR PHYSICAL CHARACTERISTICS OF RIPRAP

TABLE 17A

3 TO 6 INCH COBBLES
PIE TERMS FgR PHYSICAL CHARACTERISTICS ØF RIPRAP

TABLE $17 B$
6 TO 9 INCH COBBLES
PIE TERMS FDR PHYSICAL CHARACTERISTICS $\emptyset F$ RIPRAP

TABLE 18 A

l 1/2 TO 3 INCH ANGULAR

PIE TERMS FGR PHYSICAL CHARACTERISTICS OF RIPRAP

TABLE 18B (CONTINUED)

$11 / 2$ TO 3 INCH ANGULAR
PIE TERMS FOR PHYSICAL CHARACTERISTICS OF RIPRAP
2HERE DIA=DIAMETER GF SPHERE OF WEIGHT EQUAL TO ROCK SAMPLE
PIE 1 IS RATIO OF MEAN AXIS DIM AND DIA OF = WT SPHERE
PIE 2 IS RATIO OF MEAN AXIS DIM AND SIGNIFICANT DEPTH
PIE 3 IS RATIG DF RGCK VDLUME AND ABC RECTANGULAR SOLID

RGCK	DIA	PIE	PIE	PIE 3
NUABER	INCHES			
21	2.74433	1.21462	8.33333	.483017
22	2.0477	1.40401	7.1875	.468577
23	2.82629	1.32683	9.375	.529939
24	3.47081	1.00841	8.75	.573297
25	2.77907	1.25941	8.75	.455561
26	3.17333	1.36555	10.8333	.683792
27	3.03015	1.18256	8.95833	.688232
28	3.09783	1.18361	9.16667	.560782
29	3.05874	1.07615	8.22917	.678036
30	2.91627	1.42876	10.4167	.545997
31	3.06439	1.22374	9.375	.537619
32	3.20974	1.22024	9.79167	.603628
33	3.24535	1.09131	8.85417	.749408
34	2.56386	1.20261	7.70833	.588821
35	2.48915	1.12154	6.97917	.917643
36	2.60355	1.2803	8.33333	.498233
37	2.83291	1.14723	8.125	.572465
38	2.76528	1.26569	8.75	.463696
39	2.73019	1.23618	8.4375	.494609

TABLE $19 B$ (CONTINUED)

3. TO 6 INCH ANGULAR

PIE TERMS FOR PHYSICAL CHARACTERISTICS OF RIPRAP
WHERE DIA=DIAMETER GF SPHERE GF WEIGHT EQUAL TO RDCK SAMPLE PIE 1 IS RATID OF MEAN AXIS DIM AND DIA OF = WT SPHERE PIE 2 IS RATID QF MEAN AXIS DIM AND SIGNIFICANT DEPTH PIE 3 IS RATIG OF ROCK VOLUME AND ABC RECTANGULAR SOLID

ROCK	DIA	PIE1	PIE	PIE
NUMBER	INCHES			
21	4.10142	1.32068	6.94444	.394445
22	4.30368	1.23925	6.83761	.435781
23	3.67796	1.21218	5.71581	.411788
24	3.36409	1.08994	4.70085	.650834
25	3.43543	1.28562	5.66239	.38498
26	4.02936	1.27191	6.57051	.434354
27	3.71816	1.33355	6.35684	.355294
28	2.95642	1.24024	4.70085	.420918
29	3.76074	1.21873	5.87607	.447664
30	4.26122	1.2516	6.83761	.427691
31	2.92463	1.22523	4.59402	.619
32	3.43543	1.21285	5.34188	.473334
33	3.47001	1.39289	6.19658	.424204
34	4.17891	1.07683	5.76923	.622537
35	2.34657	1.40276	4.22009	.45407
36	4.48853	1.40172	8.06624	.307386
MEAN DIA OF $=$ WEIGHT SPHERE	3.72707	$I N C H E S$		

TABLE 20A

6 TO 9 INCH ANGULAR

PIE TERMS FOR PHYSICAL GHARACTERISTICS OF RIPRAP

TABLE 20B (CONTINUED)

6 TO 9 INCH ANGULAR
PIE TERMS FOR PHYSICAL CHARACTERISTICS OF RIPRAP

TABLE 21

PI-TERMS FOR VELOCITY PARAMETERS

TABLE 22

DISCHARGE

TABLE 23

COMPARISON DF VELOCITY CDMPUTATION

UHERE $V=$ MEAN VELGCITY DF JET BY VELDCITY PRgFILE AVERAGING
$U=$ MEAN JET VELGCITY BY EQUATION 3.15
$L=M E A N$ DEPTH DF JET ABOVE RIPRAP SURFACE

TEST	V	U	L
NUMBER	[FPS]	[FPS]	
10	6.71537	$12 \cdot 2705$	1.04
11	5.83462	11.5432	-06
14	4.93067	13.4744	$1 \cdot 34$
15	8.49489	12.3163	1.105
19	$7 \cdot 33574$	12.0363	1.875
20	7.53795	14.7475.	. 655

Figure 2
General view of test flume with baffle platform and test section in the center of the picture

Figure 4A
3- to 6-inch cobbles 6 -inch scour test profile Photo PX-D-61606NA

1

Figure 4B
3- to 6 -inch angulars 6 -inch scour in progress
Photo PX-D-61501NA

Figure 5A
Before and after 6 -inch scour
3- to 6-inch cobbles
1 -foot stone layer
21-cubic-foot-per-second flow
Photos PX-D-61607NA and PX-D-61608NA

Figure 5B
Test 6
Before and after 9 -inch scour
6 - to 9 -inch cobbles
1 -foot stone layer
11.6-cubic-foot-per-second flow Photos PX-D-61609NA and PX-D-61610NA

Figure 6A
Test 7
Before and after 9 -inch scour
6- to 9-inch cobbles
1-foot stone layer
14-cubic-foot-per-second flow
Photos PX-D-61611NA and PX-D-61612NA

Figure 6B
Test 8
Before and after 9 -inch scour
6 - to 9 -inch cobbles
1 -foot stone layer
20.6-cubic-foot-per-second flow Photos PX-D-61615NA and PX-D-61614NA

$\underset{\sim}{\infty}$

Figure 7A
Test 9
Before and after 9 -inch scour
6 - to 9 -inch cobbles
1-foot stone layer
7.5-cubic-foot-per-second flow

Photos PX-D-61615NA and PX-D-61616NA

Figure 8A

Test 11
Before and after 1-1/2-inch scour
$3 / 4$ - to $1-1 / 2$-inch cobbles
1 -foot stone layer
22-cubic-foot-per-second flow
Photos PX-D-61619NA and PX-D-61620NA

Figure 8B
Test 12
Before and after 6 -inch scour
3 - to 6 -inch angulars
1 -foot stone layer
22-cubic-foot-per-second flow Photos PX-D-61621NA and PX-D-61622NA

2

Figure 9A
Test 18
Before and after 3-inch scour
1-1/2- to 3 -inch angulars 1-1/2-foot stone layer
22-cubic-foot-per-second flow
Photos PX-D-61623NA and PX-D-61624NA

Figure 9B
Test 20
Before and after 9 -inch scour
6 - to 9 -inch angulars
1-1/2-foot stone layer
22-cubic-foot-per-second flow
Photos PX-D-61625NA and PX-D-61626NA

FIGURE 10

> SINGLE CHANMSL SLECTROMT DATA TAPE

FIGURE 11
STNGTE CHANTM,
BLBOTRONIC RTCORDER
DATA TAPIS

FIGURE 12
DUAL CHAMNBL
WLECTMNTC RGCORDR DATA TAPS

FIGURE 30. CROSS SECTIONS FOR FINAL SCOUR AT POINT OF MAXIMUM JET CONTRACTION

TEST 10
$l_{\frac{1}{2}} n \leq d \leq 3^{\prime \prime}$
STREAM ROUNDS
BAFFLE SETTING $\simeq 2.29^{\prime}$ ABOVE FLOOR

NOTE: SPECIFIC WEIGHT OF ROCK $=165 \mathrm{LB} / \mathrm{CU}$ FT.

Note: / V based on V_{S}, others on V_{m}

FIGURE 35

RIVER CLOSURES VELOCITY VS STONE WEIGHT

FIGUR: 36
AID KRSSONIS SUMIARY OF VBLOCITY CURVES REQUIRED DIAMETER OF STONE AS A FUNCTION OF MEAN VELOCITY

COMPUTOR PROGRAM ENTITLED＂RIPSHA＂

```
    10 DIM \(S(50), Z(50), X(50), V(50), \quad U S(50)\)
    20 READ N
    30 FOR J \(=1 \mathrm{TO} \mathrm{N}\)
    40 READ \(A, B, C, W, H 1, H 2\)
50 LET \(V(J)=0.670857 *(H 2-H 1)\)
60 LET \(Z(J)=B / A\)
70 LET \(X(J)=C / B\)
80 LET \(S(J)=(C * B) / A \uparrow 2\)
90 NEKT J
100 LET K1 \(=K 2=K 3=K 4=0\)
\(110 \mathrm{~F} \operatorname{RR} J=1 \mathrm{TO} \mathrm{N}\)
120 IF \(Z(J)>0.667\) THEN 200
130 IF \(X(J)<0.667\) THEN 170
140 LET K2 \(=K 2+1\)
150 LET US(J) \(=\) "II"
160 Gด Tの 260
\(170 \mathrm{LET} \mathrm{K1} \mathrm{=} \mathrm{K1}+1\)
180 LET US(J) = "I"
190 GのT0 260
200 IF \(X(J)<0.667\) THEN 240
210 LET K4 \(=K 4 \div 1\)
220 LET US(J) \(=\) "IV"
230 G0 Tg 260
240 LET K3 \(=\mathrm{K3} \div 1\)
250 LET US(J) \(=\) "III"
260 NEXT J
\(270 \mathrm{LET} \mathrm{S} 1=\mathrm{S} 2=\mathrm{S} 3=\mathrm{S} 4=\mathrm{S} 5=\mathrm{S} 6=\mathrm{S} 7=\mathrm{S} 8=\mathrm{S} 9=\mathrm{T} 1=0\)
\(280 \mathrm{FOR} J=1 \mathrm{TON}\)
290 IF \(S(J)>0.1\) THEN 320
300 LET T1 = T1 \(\div 1\)
310 GO TO 570
320 IF \(S(J)>0.2\) THEN 350
330 LET \(\mathrm{S} 8=\mathrm{S} 8 \div 1\)
340 GのT0 570
350 IF \(S(J)>0.3\) THEN 380
360 LET S9 = S9 +1
370 G9 Tの 570
380 IF \(S(J)>0.4\) THEN 410
390 LET \(\mathrm{S} 1=\mathrm{S} 1 \div 1\)
400 GO TO 570
410 IF \(S(J)>0.5\) THEN 440
420 LET S2 \(=\mathrm{S} 2 \div 1\)
430 GOTO 570
440 IF \(S(J)>0.6\) THEN 470
450 LET \(\mathrm{S} 3=\mathrm{S} 3 \div 1\)
460 GO TO 570
```


COMPUTOR PROGRAM ENTITLED "RIPSHA", continued

470 IF $S(J)>0.7$ THEN 500
480 LET S4 $=54 \div 1$
490 Gの TD 570
500 IF $\mathrm{S}(\mathrm{J})>0.8$ THEN 530
510 LET $S 5=S 5 \div 1$
520 Gの TD 570
530 IF $\mathrm{S}(\mathrm{J})>0.9$ THEN 560
540 LET S6 = S6 + 1
550 GO TG 570
560 LET $57=S 7+1$
570 NEXT J
580 LET T1 $=100 *(T 1 / N)$
590 LET S9 $=100 *(S 9 / N)$
600 LET S8 $=100 *(S 8 / N)$
610 LET S1 $=100 *(S 1 / N)$
620 LET S2 $=100 *(S 2 / N)$
630 LET S3 $=100 *(S 3 / N)$
640 LET S4 $=100 *(S 4 / N)$
650 LET $S 5=100 *(S 5 / N)$
660 LET S6 $=100 \%(S 6 / N)$
670 LET $57=100 \%(S 7 / N)$
680 LET J3 $=1$
690 PRINT
700 PRINT "RØCK", "ZING", "BC/AT2", "VOL"
710 LET M1 = 33
720 PRINT "NUMBER", "CLASS", "SPHERICITY", "CU FT"
730 LET J3 $=1$
$740 \mathrm{FgR} \mathrm{J}=\mathrm{M} 1 \mathrm{TO} \mathrm{N}$
750 LET J3 $=\mathrm{J} 3 * 1$
760 PRINT J, US(J), S(J), V(J)
770 IF J3 > 20 THEN 690
780 NEXT J
790 PRINT
795 PRINT " ", " 'r, "TABLE"
800 PRINT

COMPUTOR PROGRAM ENTITLED "RIPSHA", continued

```
805 PRINT
810 PRINT
815 PRINT " ", "ZING CLASSIFICATIGNS: PER CENT PER CATEGgRY"
820 PRINT " ", "---- ----------------"
825 PRINT " ", "I'", "II", "III", "IV"
830 PRINT " ", "DISK", "SPHERICAL", "BLADE", "RGDLIKE"
835 PRINT "PERCENT", ((K1*100)/N), ((K2*100)/N),((K3*100)/N);
340 PRINT ( (K4*100)/N)
845 PRINT
850 PRINT "SPHERICITY CLASSIFICATION = (C*B)/A*2"
85 PRINT "-------------------------------------------"
860 PRINT "PER CENT - 0.0 TD 0.1 = "; T1
865 PRINT "PPER CENT -0.1 T0 0.2 = "; S8
870 PRINT UPER CENT - 0.2 T0 0.3 = "; S9
875 PRINT "PER CENT - 0.3 T0 0.4 = "; S1
880 PRINT :PER CENT - 0.4 TO 0.5 = "; S2
885 PRINT :PER CENT - 0.5 T0 0.6 = "; S3
890 PRINT "PER CENT - 0.6 T0 0.7 = "; S4
895 PRINT 'PPER CENT - 0.7 T0 0.8 = "; S5
900 PRINT UPER CENT - 0.8 TO 0.9 = "; S6
905 PRINT :PPER CENT - 0.9 T0 1.0 = "3..S7
910 PRINT
915 G0 T0 20
1000 DATA 36
9999 END
```

CUMPUTUR PLOGRAM MTITLDD "KIPRAP"

```
10 DIM P(50),F(50), O(50),:D(50),V(50)
20 DIM H(50), G(50)
30 DIME E 40), A(40), B(40), C(40), M(40)
4O READ N,Y
50 LET G1=0
60 FOR J = 1 TO N
70 READ A, B, C, W, H1, H2
74 IF J > 16 THEN 80
76 LET W = W - 0.11
80% LET V V J ) = 0.570857*(H2-H1)
90 LET G(J) = G/V (J)
100 LET G1 = G1 + G(J)
i10 LET W(J) = \
112 LET A(J) = A
114 LET B(J)=B
116 LET C(J) = C
120 NEXT J
130 LET G = G1/N
140 FOR J=1 TON
150 LET D (J) = (W J J /(.76*G)) \.3333
160 LET D(J)=12* D(J)
170 LET E (J) = (A(J) +B(J)\divC(J))/3
180 LET PP(J) = E(J)/D(J)
190 LET F(J) = E (J)/Y
200 LET M(J) = (A(J)*B(J)*C(J))/12^3
210 LET G(J) =V (J)/M(J)
220 NEXT J
230 LET D1 = 0
2.40 FOR J=1 TO N
250 LET D1 = D1 * D(J)
260 NEXT J
2.70 LET J2 = 1
280 PRINT
290 PRINT " ", " *, "TABLE*
300 PRINT
```


COMPUTOR PROGRAM ENTITLED "RIPRAP", continued

```
310 PRINT ***, "PTE TERMS FQR PHYSICAL CHARACTERISTICS OF RIPRAP"
320 LETMi = W2
3.30 PRINT
340 LET J2 = 1
3O PRINT "WHERE DIA=DIAMETER DF SPHERE DF WEIGHT EQUAL TO ROCK SAMPLE*
360 PRINT TPIE 1 IS RATIO OF MEAN AXIS DIM AND DIA OF = WT SPHERE"
370 PRINT "PIE 2 IS RATIG DF MEAN AXIS DIM AND SIGNIFICANT DEPTH",
3O PRINT "PIE 3 IS RATID GF ROCK VOLUME AND ABC RECTANGULAR SOLID',
390 PRINT
4OO PRINT "RDCK","DIA",""PIE 1",*PIE 2","PIE 3"
410 PRINT "NUMPER","INCHES"
420 FOR J=M1 TON
430 LET J2= j2 * 1
44 PRINT J,D(J),P(J),F(J),O(J)
450 IF J2 > 20 THEN 280
460 NEXT J
```



```
480 PRINT
490GG T0 40
998 REM INSERT DATA IN LINE 1000: N, Y, G
1005 REM . AXIAL DIMENSIQNS (IN) WEIGHT HT OF EQ CYL
1007 REM A B C C L LSS H1 H2
9999 END
```


COMPUTOR PROGRAM ENTITLED "AREVEL"

```
HIM A(20), (20),G(20), 0(20),V(20),T(20),F(20),F(20),U(20),H(20)
15DIML(10),P(10),R(10),S(10),X(10),Y(10);C(10)
2O READ N
22FDR J=1 TGN
24 READ D(J)
28 NEXT J
3O FGR J=1 TG N
4O READ T(J),D(J),P(J),R(J),S(J),X(J),Y(J),C(J),O(J)
50 LET A(J) = P(J)-O(J)
60 LET L(J) = A(J)/2
7O LET A(J) =.5 *: A(J)
3OLET V(J)=(SS(J)-R(J))*0.645)/D(J)
90 LET F(J)=V(J)*A(J)
1OO LETO(J) = .5 * O(J)
110 LETG(J)=O(J)-F(J)
130 LET H(J)=X(J) - Y(J)
14OLETU(J)=(1/SOR(1-(Y(J)/X(J))\uparrow2)) * SOR(2*32.2*H(J))
j.5\capLETE(J)=U(J)*C(J)*A(J)
1 6O NEXT J
170 PRINT
13O PRINT " ", " ", "TABLE"
190 PRINT
?OO PRINT " "t, " ", "DISCHARGE"
2.10 PRINT
22O PRINT "NHERE","G = FLON IN CUBIC FEET PER SECOND IN GRAVEL"
230 PRINT " ", "Q = TOTAL DISCHARGE FOR UNIT UIDTH SECTION"
240 PRINT " ","F = DISCHARGE IN IET CGMPUTED BY THE GONTINUITY EQUATION"
25O PRINT " ", "E = DISCHARGE IN JET COMPUTED BY EOUATION 3.16"
260 PRINT
270 PRTNT "TEST","DISCHARGE","TOTAL","DISCHARGE","DISCHARGE"
?80 PRINT "NUMBER","TN","OMSCHARGE","F'","E"
290 PRINT " ","RIPRAP","IN"," "," "
30O PRINT " ", "G","PLUME"," "," "
```


COMPUTOR PROGRAM ENTITLED "AREVEL", (cóntinued)

```
310 PRINT " ","(CFS/FT)","(CFS/FT)","(CFS/FT)","(CFS/FT)"
320 PRTNT
3, FOP, J=1 TO N
340 PRINT T(J),G(J),Q(J), F(J), E(J)
350 NEXT J
360 PRINT
370 PRTNT
3RD PRINT " "*,* *,"TABLE**
390 PRINT
4OO PRINT " ","COVPARISGN OF VELOCITY COMPUTATION"
4 1 0 ~ P R I N T ~
42O PRINT'WHERE V = MEAN VELQCTTY DF IET BY VELOCITY PRDFILE AVERAGING'B
430 PRINT TAB(7);"U = MEAN JET VELGCTTY BY [QUATION 3.1S"
435 PRINT * * ,'L = MEAN DEPTH OF JET ABOVE RIPRAP SURFACE'"
4O PRINT
450 PRINT "TEST",*V", "U", "L"
460 PRTNT "NUMRER","(FPS)","(FPS)"
470 PRINT
4马O FGR J= 1 TO N
490 PRINT T(J), V(J), U(J), &(J)
5 0 \cap ~ N F X T ~ J ~
510 60 T0 20
52O DATA 6
525 DATA 1.75, 1.96, 1.35, 1.35, 1.42, 1.66
53\cap DATA 10, 81.70, 83.78, 77.30, 95.52, 4.10, 3.090, .81000, 21.85
5\ DATA 11., 99.78, 79.90, 06.04, 23.77, 3.85, 3.314, .89000, 22.09
```



```
560 DATA 15, 06.51, 08.72, 90.34, 108.12, 3.70, 2.112, .65120, 22.00
570 DATA 19, 94.05, 97.80, 14.85, 31.00, 3.80, 2.619,.83188, 21.47
580 DATA 20, 88.76, 90.07, 54.55, 73.95, 5.14, 2.683, .67860, 21.82
1000 END
```


TABLE 4. EFFECT OF EXTREME RANGE OF SHAPE ON SIZE OF SPECIFIED REVETMENT STONES

Shape	Slape ratios		Shape factor V / Vm	$j=\frac{V}{l^{1}}$	$k=\frac{t}{\sqrt[3]{w}}$ for	
	r	8			$x / g=2.4$ $d=1.00$	$\begin{aligned} & 2.8 \\ & 17.5 \end{aligned}$
Spheroidal.	. 1.00	1.00	. 52	- . 52	;23	\ldots
Lenticular-	. 33	1.00	. 52	. 17	.34	. 32
Filipeoidal.	. 33	. 33	. 32	. 1188	. 49	. 46
Cylindrical	. 33	, 33	.783	. 0×7	. 42	+41
Discoidal.	. $3: 3$	1.00	.78.5	. 26	. 30	. 28
Cuboidal.	1.00	1.00	. 19	. 19	. 33	. 31
Tetragonal	. 33	. 75	. 26	. 082	. 43	41
Slabal....	. 33	. 97	. 28	. 092	, 41	. 39
Conoidnl.	1.00	1.00	. 26	. 26	. 30	.2s
Pyramidal.	1.00	1.100	. 33	. 33	. 27	. 26
Tetrahedral.	. 33	. 38	. 17	. 0602	.68	. 63
Normal cube.	1.00	1.00	1.00	1.00	. 188	.179

For this purpose, the characteristic shapes are assmmed to be the extremes within the definitions of shapes and specifications for permissible elongation. Such shapes may occur, but they will not be dominant, except possibly the slabal shape in rock broken from laminar formations, and the Jentieular shape common to cobbles.

Axial length is also taken as an extreme. The effect of this is most striking for the cuboidal shape. If axes were taken normal to faces of a cube, the volume is l^{3}, but if l is the diagonal of the eube, its volume is $.19 l^{3}$. The normal eube is listed at bottom of the table to emphasize this difference.

Maximum Length

Table + expresses the volume of extreme shapes in two ways: (1) as a shape factor, or ratio to the enveloping prism, and (2) as a ratio to the cube of the longest dimension.

For the latter, the table shows k for the relation $I^{t}=j l^{3}$, and since $W=V d$,

$$
l=\sqrt[3]{1 \% / j d}=k \sqrt[3]{W} \text { where } k=1 / \sqrt[3]{j d}
$$

Valnes of k for extremes of density are tabulated in the last two coltumus.

To illustrate use of k, consider a 4 -ton stone, for which the enbe root of the weight in pounds is 20 . Using a density of 175 pef, if the stone is a perfeet eube, its side is $20 \times .179=3.58 \mathrm{ft}$. It a sphere, its diameter is $20 \times .22=4.4 \mathrm{ft}$. If lenticular with vertical diameter only a third of its horizontal diameter, the latter is $20 \times .32=6.4$ it. Specifications will even allow a shape $20 \times .46=9.2 \mathrm{ft}$ long.

