

UNITED STATES
DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION

PROGRESS REPORT II
RESEARCH STUDY ON STILLING BASINS
ENERGY DISSIPATORS,
AND ASSOCIATED APPURTENANCES

Hydraulic Laboratory Report No Hyd-399

ENGINEERING LABORATORIES

COMMISSIONER S OFFICE DENVER COLORADO

TA
416
.B87
HYD-399
1955
C. 2

DATE DUE

Introauction 4
8
8
8
Section
 Aproa (Bestin in)
Introduction 9
Curnent chiqe thinentation 9
Experementat Results 2
The Froude himber 32
 314
Eensitio of tume 16
Enericg Absiextion An Juig 20
Tonme of the Hyarexhace tump: 20
Practiceat conduderityons. 24.
 25
Conclugtions 25
Application of Remults (trample 1) 25
2. Stilling Baetin for Hish Dem and Earth Dam Spiflways
Introduction 27
Analysite of Stelisting Data 27
Resulte of Camplistition: 30
Taill mater deptin 30
Chute blockes 30
Dentated sill 31
Additional detalle 31
Vexification pests 32
Tail Kater Depth 34
Length of Basin 36
Water-surface: Pathles 36

donistis-montinued

Section Pege
Conclustons 38
Atds in Computation 4
Application of Resulte (3xamis 2) 43

Introduction 45
Development 45
Verifleation Hests 50
Stilling Beran Pextormace andinestign 50
Chute Blocks 50
Baffle Bilocks 52
End Sizi 52
Teil Water Depith 54
Length of Basin 54
Water Surfece and Pressure trofiles 55
Recommendations 55
Application of Results (Fixample 3) 58
4.: Stilusig Baisin Designand weve Suppersors nom cainalStructures, Outlet Works, and Diversion Dams(Besin IV)
Introduction 62
Jump Characteristicg-mincude himber 2.5 to 4.5 62
Stilling Baisin Designcrixtude Muther 2.5 to 4.5 63
Development treste 63
Finel Tests 63
Deflector blocks 63
Tadil water deipth 66
Baisin length and end silil 66
Performance 66
Alternate Stillifing Bacin Degign-Small Drops 67
Performance 67
Design 67

Conilumis-continued

Section paref
Wave Suppressors 67
Ralt Type Wave Suppressor 69
Underpass Type Have Suppressor 7
General description 7
Performance 7
General design procedure 76
Sample problem, Example 4 80
5. Stilling Basin with sloping Apron (Basin V)
Introduction 83
Previous Experimental Work 83
Sloping Apron rests 84
Taill Water Depth (Case D) 84
Length of Jump (Cusé D) 88
Expression for Jump on Slioping Apron (Case D). 92
Jump Characterfatics (Cade B) 92
Experimental Resiults (Case B) 95
Length of Jump (Case B) 98
Practical Applications 100
Existing Structures 100
Evaluation of Sloping Aprons 105
Sloping Apron Versus Horizontal Apron 106
ziffect of slope of Chute 106
Recommendations 107
6. Stililing Basin for Plipe or Open Channel OutletsNo Tail Water Required (Basin VI)
Summary 1.72.
Introduction 112
Iest Procedure 113
Hydraulite Modele 113
Development of Beasin 113
Performance of Basin 115
Basin Design 118
Conclusions and Reconmendations 120
Bibliography 123
No. Page
1 Test Flumes A and B 5
2 Test Flumes C and D 6
3 Test Flumes E and F 7
4 Definition of Symbols (Basin I) 13
5 Ratio of Tail Water Depth to D 15
6 Length of Jump in Terms of D_{1} (Basin I) 17
7 Length of Jump in Terms of D_{2} (Basin I) 18
8 Loss of Energy in Jump on Horizontal Fioor 21
9 Jump Forms 22
10 Definition of Symbols (Basin II) 28
11 Minimum Tail Water Depths (Basins I, II, and III) 35
12 Length of Jump on Horizontal Floor (Basins I, II, and III) 37
13 Approximate Water Surface and Pressure Profiles (Basin II) 39
14 Recommended Proportions (Basin II) 40
15
Curves for Determination of Velocity Entering Basin forSteep Slopes42
16 SAF Stilling Basin 46
17 Record of Appurtenances (Basin III) 48
18 Recommended Proportions (Basin III) 49
19 Height of Baffle Blocks and sill (Basin III) 53
20 Approximate Water Surface and Pressure Profiles
(Basin III) 56
21 Tail Water and Jump Height Curves (Example 3) 59
22 Record of Appurtenances (Basin IV) 64
23 Proportions for Stilling Basin IV 65
24 Drop Energy Dissipator (Type IV) 68
25 Raft Wave Suppressor (Iype IV) 70
26 Performance of Underpass Wave Suppressor 72
27 Hydraulic Performance--Wave Suppressor for Friant-Kern Canal 74
28 Underpass Suppressor--Wave Height Records--Carter Lake 75
29 Underpess Suppressor--Hydraulic Characteristics 77
30 Forms of Jump on Sloping Apron 85
31 Ratio of Tail Water Depth to D_{1} (Basin V, Case D) 89
32 Length of Jump in Terms of Tail Water Depth (Besin V, Case D) 90
33
Length of Jump in Terms of Conjugate Depth D_{2} (Besin v, Case D) 91
34 Shape Factor K in Jump Formula (Basin V, Case D) 93
35 Profile Characteristics (Basin V, Case B) 94
Tail Water Requirement for Sloping Aprons (Basin V,Case B)99
Comparison or Existing Sloping Apron Designs with CurrentExperimental Results (Basin V, Case B)102
38 Existing Basins with Sloping Aprons (Sheet 1 of 2) 103
39 Existing Basins with Sloping Aprons (Sheet 2 of 2) 104

```
FICURES-Contimuea
```

⽿ㅗㅇ․ Page
40 South Canal Chute, Station 25+19, Uncompahgre Project 10.8
41 Basin Action, South Canal Hhte, Uncompahgre Project 309
42 Impact Type Energy pissipator (Basin VI.) 72.
43 Typical Performance (Basin VI) $1{ }^{1} 4$
44 Comparison of Energy Losses--Hyaraulic Jump and Basin VI 149.
45 Erasion and Bmergency Opexation (Basin VI) 323
TABELES
1 Stilling Basin with Horizontal Floor (Basin I) 10411
2 Model Results on Existing Type II Basins 2
3 Vexification Tests on Type II Basins 33
4 Verification Tests on Type III Basins 51
5 Results of Example 3 58
6 Wave Height Reduction with Underpass Type Wave Suppressor 76
7 Effect of Underpass Length on Have Reduction 79
8 Stilining Besins with Sloping Apron (Basin V, Case D) 86.87
9 Stilling Basins with Sloping Apron (Bagin Va Case B) $96-4$
10 Existing Stulling Basins with Sloping Apions 101
11 Stilling Basin Dinensions (Basin VI) 116

UNETHEP STAATES
 DERARMAEHIT OF THE TMILERIOR
 buEsap or reclavanior

Commissioner's Office
Engineering Laboratories
Denver, Colorado
June 1, 1955

Laboratory Report Io. Hya-399\% Hydraulic Laboyatory:
Compiled by: J. If. Bradiey:
A. J. Peterika

Subject: Progress Report II; Research Study on Stilling Besins, Enezgy Dissipators; and Associated Appuxtenances

INIRODUCTION

Although the Bureau of Reclamation has designed and constructed humareds of atilling basins and energy dissipation devices in confunction with spilivases, cutlet works, and canal structures, it is stini. necessary in many cases to make model studies of individual structures to be certain that these will operate as anticipiated. The reason fox these repetitive tests, in many cases, is that a factor of uncentainty: exists, which in retrospect is related to an incomplete understanding of the overall characteristics of the hydraulic jump and other types of energy dissipatoris.

Previous labloratory studies made on individual structures over a period of years, by different personnel, for different groups of desiguers, with each sticucture having a different allorable design limitation for downstrean erosion, resulted in a collection of data whiteh on any plotting proved to be skatciny, inconsistent, and tith only yegire connecting links. Bitensive lilibraiys rebearch into the works of otheris revealed the fact that these links were actually nonexistent.

To fill the need for up-to-date hydraulic design information on stililing besias and energy aisaipators the laboratory initiated a. regearch program on thais general subject. The program was begun with at rather academic study of the hydraulic jump, observing all: phases as it occurs in open channel flow. With a broader understanding of this phenomenon it was then possible to proceed to the more practical aspects of stilling basin designo.

[^0]Existing knowledge, litcladiag laboratoxy and field tests collected from Hydraulic Laboratory records tidi experience over a 23year period, was used to establish a direct aproach to the practicai problems encountered in hydraulic design. Fhnireds of tests vere aliso performed on both arailable and specially constructed equipment to obtain a fuller undergtanding of the data at hand and to close the minn loopholes. Testing and analysis were synchronitea to establish with curves in critical regimes, providing sufficient understamaing of thite hydraulic fump in its many forms to establish workable design criteania. Since all the test points were obtained by the same persomel, using: standards established before testing began, and singe resultis and cordclusions were evaluated from the same ?atum, the datis presented are consistent and reliable.

This report, therefore, is the result of the first integrated attempt to generailize the design of stilling basins; energor diasipators, and associated apprartenances. General design mules are presentediso that the necessary dimensions for a particular structure may be easiliky and quickly determined, and the selected values checised by other designers without the need for exceptional judguent or extensive previous experience.

Although mach of the oxiginal data are presented-in tabuliar form, the report emphasizes design procedurea rather than the hydrialife aspects of the data. Certain design procedures, recormended in the past, have been astisfactorily proven, whilie others liave been modified or discarded in favor of improved methoas. Satisfectory expapanations are given for procedures, which in the past were considerealyncorisisteats for example, it is now fully understood why certain" hydrauilic "Jupp: is. require a stilling basin only 2.5 times the downstreaid dep.the of foll while other jumps require basin lengths 4.5 times the depth of thouts:

In most instances design rules and procedures are clearly. stated in simple terms with ismity fixed in a derinite mainge. In other cases, however, it is necessary to state procedures and limite in broader terms, making it necessary to carefulaly read the accompanying text.

Proper use of the material in this report will eliminate the need for hydraulic model tests on many individusdi structures, particularly the smaller ones. Structures obtained by following the recommendations in this report will be conservative in that they will contain a desirable factor of safety. However, to further reduce structure sizes; to account for unsymmetrical conditions of approach or getaway, or to evaluate other unusual conditions not covered in this discussion, model studies will still prove begeficial.
seode

 Items 7 through 13 wil1 be coupleted us the and rude peitife
 apron.

 terancei modify the jump, causing it to forin ince aborteck than nominal length.
 structures, suidi outilet wofles, end sman spotivays where bitifice

4. Stilling besin, alternate basin, and tro types of wate sugpressors, for use on canal stinctures, outlet works, apal diftersion damis.
5. Stillifg basin with elopitig apron for Jarge capactites and high velocities, theire appiatonaices in busin ate undestrabites
 outlets where tatl weqer, is nowexistent or unithom.
7. Overcinute type of disispator where baffle blocks distributed over the entife length atid with of the chite dilisitpato the energy in the water as it falls.
8. Stilling basin for diversion dams where temporary retrogression is expected.
9. Stilling basin for diversion dams whith can accommodate both free and subimerged flow.
10. Stiliting basin for use on high head outlet vorks, utiaizizing hollow-jet valves.
11. Slotted bucket for medium and low overfall dams.
12. Solfa bucket for overifall dams where an excess of tatin water exists.
13. Flip bucket which alscharges above the tail water.

Stilling basins are defined as structures in which all or part of a hydraulic jump or other energy reducing action is confined. Other structures, such as buckets or impact dissipators, are designated energy dissipators.

EXPEERMESTIAL EQUIPMENTI

Five test flumes were used at one time or another to oftotitu the experimental data required in the present test progatam, Flywet A and B, Figure 1; Flumes C and D_{p} Figure 2; and Fhume F, Thgure 3 ts, the arrangement show as Fhume E, Figure 3, actually occupied a portiongof Flume D during one stage of the teating, but it will be destgriatedas a separate flume for ease of reference. Each flume served a utertis. purpose either in verifying similarity or extending the range of the experiments. Flumes A, B, C, D, and E contalined overflotsections so that the jet entered the stiliing basin at an angle to the hoxizolitial. The degree of the angle vaxied in each case. In Hiume Fis the entering jet emerged from under a vertical slide gate so the initial veiocity was horizontal.

The experiments were started in an existing model of tobe Trenton Dam spiliway, Flgure 1A, having a smati discharge and low velocity. This was not an ideal piece otequipment for general experimentis as the training walls on the chite were diverging. The rapid expangion caused the distribution of flow entering the stililing basin to shaft with each change in discharge; nonetheless, this pitece of equipment served a purpose in that it aided in getiting the research program: underway.

Tesis were then continued in a glass-sided laboratory flume 2 feet wiae and 40 feet long in which an overflow section was instajled; Flume B, Figure 1. The crest of the overflow section was 5.5 feet above the floor, while the downstream face was on a slope of 0.7:1. The . capacity was about 10 cfs.

Later, the work was carried on at the base of a chute 18 inches wide having a slope of 2 homizontal to 1 vertical and a drop of approximately 10 feet, Flume C, Figure 2. The stiliting besin had a glass wall on one side. The discharge capactity was 5 efs.

The largest scale experiments were made on a glass-sided laboratory flume 4 feet ride and 80 feet long, in which an overiall crest with a slope of $0.8: 1$ was instailed, Flume D, Figure 2. The drop from headwater to tail water in this case was appyoximately 12 feet, and the maximm discharge was 28 cfs.

TEST FLUME A
Width of basin 5 feet, drop 3 feet, discharge $\varepsilon \mathrm{cfs}$

TEST. FLUME B
Width 2 feet, drop 5:5 feet; discharge 10 cfs

TEST FLUME C
Width 1.5 feet, drop 10 feet, discharge 5 cfs; slope $2: 1$

TEST FLUME (E)
Width 4 feet, Drop 0.5-1.5 feet, Discharge 10 cfs

The downstream end of the above flume was also utilized for testing small overflow sections 0.5 to 1.5 feet in height. The maximum discharge used was 10 cfs . As stated above, this plece of equipment will be designated as Flume E, and is shown on Figure 3.

The sixth piece of equipment was a tilting flume which could be adjusted for slopes up to 12°, Flume F, Figure 3. This flume vas 1 foot wide by 20 feet long; the head available was 2.5 feet, and the flow was controlled by a slide gate. The discharge capacity was about 3 cfs.

Fach piece of equipment contained a head gage, a tail gage, a scale for measuring the length of the jump, a point gage for measuring the average depth of flow entering the jump, and a means of regulating the tail water depth. The discharge in all cases was measured through the laboratory venturi meters or portable venturi-orifice meters. Ihe tail water depth was measured by a point gage operating in a stiliingwell in most of the cases. The tail water depth was regulated by an adjustable weir at the end of each flume.

REMARKS

It is felt that the design information to be presented will be found economical as well as effective, yet an effort was made to lean toward the conservative side. In other words, a moderate factor of safety has been included throughout. Thus, the information is considered suitable for general use with the following provision:

It should be made clear at the outset that the information herein is based upon symmatrical and uniform action in the stilling basin and buckets. Should entrance conditions or appurtenances near the bead of any of these structures tend to produce saymmetry of flow down the chute and in the stilling basin, these generalized designs may not be adequate. In this case it may be advisable to make the basin in question of a more symmetrical nature, more conservative, or it may be wise to invest in a model study. Also, should greater economy be desired than these generalized designs indicate, a model study is recommended.

GHIERAL INVESITGATIOE OF WHE THORAILIC JUNP ON HORTZONIAL APROF
 (BASIN I)

Introduction
A tremendous amount of expermental, as well as theoretical, work has been performed in comection with the hyiraulic jump on a horizontal apron. To mention a few of the experimenters who contributed basic information, there are: Bakhmeteff and Matzkel 9, Safranez ${ }^{3}$, Woycicki4, Chertonosovi0, Eimwachter ${ }^{11}$, BIms 12, Hinds14, Forcheimer 21 , Kennison22, Kozeny23, Rehbock 24 , Schokiltsch 25 , Woodwari26, and others. There is probably no phase of hydranilics that has received more attention, yet, from a practical viewpoint there is still mach to be learned.

As mentioned previously, the first phase of the present study was academic in nature consisting of correlating the results of others and observing the hydraulic jump throughout its various phases; the primary purpose being to become better acquainted with the overall jump phenomenon. The objectives in mind were: (1) to determine the applicability of the hydramic fump formala for the entire range of conditions experienced in design; (2) as only a limited emount of information exists on the length of jump, it was desired to correlate existing data and extend the range of these detexminations; and. (3) it was desired to observe the various forms of the jump and to catalog and evaluate them.

Cument Experimentation

To satisfactorily observe the hydraulic jump throughout its entire range required a testing program in all of the six flumes shown on Figures 1 , 2, and 3. This involved about 125 tests, Table 1 , at discharges from 1 to 28 cfs . The mumber of flumes used enhanced the value of the results in that it was possible to observe the degree of similitude obtained for the varicas scales. Greatest reliance was naturally placed on the results from the larger scales, or larger flumes, as it is well known that the jump action in small models occurs too rapidly for the eye to follow details. Incidentally, the length of jump obtained from the two smalier flumes, A and F, was comsistentiy shorter than that observed for the larger flumes. This was the result of cut-of-scale Irictional resistance on the floor and side walls. As testing advanced and this deficiency became better understood, some allowance was made for this effect in the observations.
Frove 1

Experimental Results

Definitions of the symbols used in connection with the hydraulic jump on a horizontal floor are shown on Figure 4. The procedure followed in each test of this series was to Pirst establish a flow. The tail water deyth was then gradually increased until the front of the jump moved upstream to Section 1, indicated on Figure 4. The tail water depth was then measured, the length of the funp recorded, and the depth of flow entering the fump, D_{1}, was obtained by averaging a generous number of point gage measurements taken inmediately upstream from Section 1, Figure 4. The results of the measurements and succeeding computations are tabulated in Table 1 . The measured quantities are tabulated as follows: total discharge (Colum 3), tail water depth, which should be the conjugate depth in this case (Column 6), length of jump (Column 11), and depth of flow entering Jump (Colum 8).

Column 1 indicates the test flumes in which the experiments were performed, and Column 4 shows the width of each flume. All complu-. tations are based on discharge per foot width of flume, or q, and unit discharges are shown in Column 5.

The velocity entering the Jump ∇_{1}, Columan 7, was computed by dividing q (Column 5) by D_{1} (Column B).

The Froude Number

The Froude number, Column 10, Table 1, is simply:

$$
\begin{equation*}
F_{1}=\frac{V_{1}}{\sqrt{\delta_{1} D_{1}}} \tag{1}
\end{equation*}
$$

where F_{1} is a dimensionless parameter, V_{1} and D_{1} are velocity and depth of flow, respectively, entering the jump, and g is the acceleration of gravity. The law of similitude states that where gravitational forces predominate, as they do in open channel phenomenon, the Froude muber should be the same value in model and prototype. Although energy conversions in a hydraulic fump bear some relation to the Reynolds mumber, gravity forces predominate, and the Froude mumber is very useful for plotting stilling basin characteristics. Bahkneteff and Matzkel demonstrated this application in 1936 when they related 2 atilling basin characteristics to the square of the Froude number, $\frac{\mathrm{V}^{2}}{601}$. They terned this

The Froude number will be used throughout this presentation. As the acceleration of gravity is a constant, the terin g could be omitted. Its inclusion makes the expression dimensionless, hovever, and the form shown as (1) is preferred.

Applicability of Hyaraulic Jump Formala

The theory of the hydraulic jump in horizontal channels has been treated thoroughly by others (see Bibliography), and will not be repeated here. The expression for the hydraulic jump, based on pressure-momentum, occurs in many forms. The following form is most commonly used in the Bureau: 15

$$
\begin{equation*}
D_{2}=-\frac{D_{1}}{2}+\sqrt{\frac{D_{1}^{2}}{4}+\frac{2 \nabla_{1}^{2} D_{1}}{g}} \tag{2}
\end{equation*}
$$

This may also be written:

$$
D_{2}=-\frac{D_{1}}{2}+\sqrt{\frac{D_{1}^{2}}{4}+\frac{2 v_{1}^{2} D_{1}^{2}}{D_{1}}}
$$

Carrying D_{1} over to the left side of the equation and substituting $\mathrm{F}_{1}{ }^{2}$ for $\frac{\mathrm{V}_{2}{ }^{2}}{\mathrm{SD}_{1}}$,

$$
\frac{D_{2}}{D_{1}}=-1 / 2+\sqrt{1 / 4+2 P_{1}^{2}}
$$

or

$$
\begin{equation*}
\frac{D_{2}}{D_{1}}=1 / 2\left(\sqrt{1+8 r_{1}^{2}}-1\right) \tag{3}
\end{equation*}
$$

Expression (3) shoss that the ratio of conjpgate depths is strictly a function of the Froude mumer. The ratio $\frac{D_{2}}{D_{1}}$ is plotted with respect to the Froude mumber on Fignre 5. The line, which is virtually straight except for the lower end, represents the above expression for the hydraulic pump; while the points, which are experimental, ane from Colvans 9 and 10, Table 1. The agreement is quite good for the entive range. There is an unsuspected characteristic, however, which should be mentioned here but will be enlarged on later.

Although the tail water depth, recorded in Column 6 of Table 1, was sufficient to bring the front of the Juwe to Section 1 (Figure 4) in aach test, the ability of the Jump to remain at Section I for a slight lowering of tail water depth became more difficult for the higher and lover values of the Froude number. The jump was least sensitive to variation in tail water depth in the midale range, or values of P_{1} from 4.5 to 9.

FIGURE 5

Length of Jump
The length of the jump, Column 11, Table 1, was the most difficult measurement to determine. In cases where chutes or overfalls were used, the front of the jump was held near the intersection of the chute and the horizontal floor, as shown on Figure 4. The length of jump was measured from this point to a point downstream where either the highvelocity jet began to leave the floor or to a point on the surface immediately downstream from the roller, whichever was the longer. In the case of flume F, where the flow discharged from a gate onto a horizontal floor, the front of the jump was maintained just downstream from the completed contraction of the entering jet. The point at which the high-velocity jet begins to rise from the floor is not fixed, but tends to shift upstream and downstream. This is also true of the roller on the surfsce. It was at first difficult to repeat length observations within 5 to 10 percent by either criterion, but with practice satisfactory measuremonts became possible.

A system devised to measure velocities on the bottom, to aid in determining the length of jump, proved inadequate and too laborious to allow completion of the program planned. Visual observations, therefore, proved to be the most satisfactory as well as the most rapid method for determining the length measurement. It was the intention to judge the length of the jump from a practical standpoint; other words, the end of the jump, as chosen, would represent the end of the concrete floor and side walls of a conventionsl stilling basin.

The length of juap has been plotted in two ways. The first is perhaps the better method while the second is the more common. The first method is shown on Figure 6 where the ratio length of jump to D_{1} (Colum 13, Table 1) is plotted with respect to the Proude mumber, (Colum 10) for results from the six test flumes. Whe resulting curve is fairly flat, which is the principal advantage gained by the use of these coordinates. The second method of plotting, where the ratio of length of Jump to the conjugate tail water depth D_{2} (Column 12) is plotted with respect to the Froude number, is presented on Figure 7. This latter method of plotting will be used throughout the study: The points represent the experimental values.

In addition to the curve established by the test points, curves representing the results of three other experimenters are shown on Figure 7. The best known and most widely accepted curve for length of jump is that of Bakhneteff and Matzkel which vas determined from experiments made at Columbia University. The greater portion of this curve, labeled 1 , is at variance with the present experimental results. Because of the wide use this curve has experienced, a rather complete explanation is presented regarding the disagreement.
FIGURE 6

T	,																						
	-																						
	,																						
		-															-						
		4																					
		,	-																				
			-																				
			-													-							
				-																			
				\bigcirc																			
				,	-																		
					-																		-

 $F_{1}=\frac{V_{1}}{\sqrt{g D_{1}}}$

FIGURE 7

The experiments of Bakhmeteff and Matzke were performed in a flume 6 inches wide, with limited head. The depth of flow entering the jump was adjusted by a vertical slide gate. The maximam discharge was approximately 0.7 cfs , and the thickness of the jet entering the jump, D_{1}, was 0.25 foot for a Froude number of 1.94. The results up to a Froude mumber of 2.5 are in agreement with the present experiments. To. increase the Froude number, it was necessary for Bakhmeteff and Matzke to decrease the gate opening. The extreme case involvad a discharge of 0.14 cfs and a value of D_{1} of 0.032 foot, for $F_{1}=8.9$, which is much smaller than any discharge or value of D_{1} used in the present experiments. Thas, it is reasoned that as the gate opening decreased, in the 6 -inch-wide flume, irictional resistance in the channel downstream increased out of proportion to that which would have occurred in a larger flume or a prototype structure. Thas, the Jump formed in a shorter length than it should. In laboratory language, this is known as "scale effect," and is construed to mean that prototype action is not faithfuliy reproduced. It is quite certain that this was the case for the major portion of the Bahkmeteff-Matzke curve. In fact, they were somewhat dubious concerning the small scale experiments.

To confirm the above conclusion, it was found that results from Flume F, which was 1 foot wide, became erratic when the value of D_{1} approached 0.10. Figures 6 and 7 show three points obtained with a value of D_{1} of approximately 0.085 . The three points are given the symbol x and fall short of the recomsended curve.

The two remaining curves, labeled 3 and 4, on Figure 7, portray the same trend as the curve obtained from the current experiments. The criterion used by each experimenter for judging the length of the jump is undoubtedly responsible for the displacement. The curve labeled 3 was obtained at the Technical University of Berlin on a flume $1 / 2$ meter wide by 10 meters long. The curve labeled 4 was determined from experiments performed at the Federal Institute of Technology, Zurich, Switzerland, on a flume 0.6 of a meter wide and 7 meters long. The curve mumers are the same as the reference mumbers in the Bibliography which refer to the work.

As can be observed from Figure 7, the test results from Flumes B, C, D, S, and F plot sufficientiy vell to eatablish a single curve. The five points from Flume A, denoted by squares, appear somewhat erratic and plot to the right of the general curve. Henceforth, reference to Figure 7 will concern onily the recommended curve which is considered applicable for general use.

Energy Absorption in Jump

With the experimental information available, it is only a matter of computation to determine the energy absorbed in the jump. Columas 14 through 18, Table 1, 11st the computations, and the symbols may be defined by consulting the specific energy diagram on Figure 4. Column 14 lists the total energy, Fi, entering the jump at Section 1 for each test. This is simply the depth of flow, D_{1}, plus the velocity head computed at the point of measurement. The energy leaving the jump, which is the depth of flow plus the velocity head at Section 2, is tabulated in Column 15. The differences in the values of Columns 14 and 15 constitute the loss of energy, in feet of water, attributed to the conversion, Column 16. Column 18 11sts the percentage of energy lost in the juwp E_{I}, to total energy entering jump, E_{1}. This percentage is plotted with respect to the Froude muber and is shown as the curve to the left on Figure 8. For a Froude number of 2.0 , which would correspond to a relatively thick jet entering the jump at low velocity, the curve shows the energy absorbed in the jump to be about 7 percent of the total energy entering. Considering the other extreme, for a Froude number of 19, which would be produced by a relatively thin jet entering the jump at very high velocity, the absorption by the jump would amount to 85 percent of the energy entering. Thus, the hydraulic jump can pexforil over a wide range of conditions. There are poor jumps and good jumps, with the most satisfactory occurring over the center portion of the curve.

Another method of expressing the energy absorption in a jump is to express the loss $\mathrm{E}_{\mathrm{L},}$ in terms of D_{1}. The curve to the right on Figure 8, shows the ratio $\overline{\mathrm{E}_{\mathrm{I}}}$ (Colman 17, Table 1) plotted against the Froude number As there are those who prefer this method of plotting, the latter curve has been included.

Forms of the Eydraulic Jump
The hydraulic jump may occur in at least four different distinct forms on a horizontal apron, as shom on Figure 9. Incidentally, all of these forms are encountered in design. The internal characteristics of the jump and the energy absorption in the jurp vary with each form. Fortunately these forms, some of which are desirable and some undesirable, can be cataloged conveniently with respect to the Froude number.

The form shown in Figure 9A can be expected when the Froude number ranges from 1.7 to 2.5. When the Froude muber is unity, the water would be flowing at critical depth; thus a jump could not form. This would correspond to Point 0 on the specific enerey diagram of Figure 4. For the values of Froude number between 1.0 and 1.7 there is oniy a silight difference in the conjugate depths D_{1} and D_{2}. A slight ruffle on the water surface is the only apparent feature that

FIGURE 9

differentiates this from flow with uniform velocity distribution. As the Froude number approaches 1.7 , a series of small rollers develop on the surface as indicated in Figure 9A, and this action remains mach the same but with further intensification up to a value of about 2.5 . Actually there is no particular stilling basin problem involved; the water surface is quite smooth, the velocity throughout is fairly uniform, and the energy loss is 20%.

Figare 9B indicates the type of jump that may be encountered at values of the Froude number from 2.5 to 4.5 . This is an oscillating type of action, so common in canal structures, where the entering jet oscillates from bottom to surface and back again witih no regular period. Iurbulence occurs near the bottom one instant and entirely on the surface the next. Each oscillation produces a large wave of irregular period which, in the case of canals, can travel for miles doing unlinited damage to earth banks and riprap. The case is of sufficient importance that a separate section, Section 4 , has been devoted to the practical aspects of design.

A well stebilized jump can be expected for the range of Froude mubers between 4.5 and 9 (Figure $9 C$). In this range, the domstream extrenity of the surface roller, and the point at which the highvelocity jet tends to leave the floor practically occur in the same vertical plane. The jump is well balanced and the action is thus at its best. The energy absorption in the jump for Froude mumbers from 4.5 to 9 ranges from 45 to 70 percent (Figure 8).

As the Froude muber increases above 9, the form of the furm gradually changes to that shown in Figure $9 D$. This is the case where V_{1} is very high, D_{1} is comparatively small, and the difference in conjugate depths is large. The high-velocity jet no longer carries through for the full length of the jump. In other words, the downstream extremity of the surface roller now becomes the determining factor in judging the length of the jump. Slugs of water rolling down the front face of the fump intermittentiy fall into the high-velocity jet generating additional waves domstream, and a rough surface can prevail. Figure 8 shows that the energy dissipation for this case may reach 85 percent.

The limits of the Froude mumber given above for the various forms of jump are not definite values, but overlap somewhat depending On local factors. Returning to Figure 7, it is found that the length curve catalogs the varicus phases of the jump quite well. The flat portion of the curve indicates the range of best operation. The steep portion of the curve to the left definitely indicates an internal change in the form of the jump. In fact, two changes are manifest, the form shown in Figure $9 A$ and the form, which might better be called a transition stage, shown in Figure 9B. The right end of the curve on Figure 7 also indicates a change in forin, but to less extent.

Practical Considerations

As stated previously, it was the intention to stress the academic rather than the practical viewpoint in this section. An exception has been made, as this is the logical place to point out a few of the practical aspects of stilling basin design using horizontal aprons. Viewing the four forms of jump just discussed, the following is pertinent:

1. All forms are encountered in stilliag basin design.
2. The form in Pigure 9A requires no baffles or special consideration. The only requirement necessary is to provide the proper length of pool, which is relatively short. This can be obtained from Figure 7.
3. The form in Pigure 98 is one of the most difficult to handle and is frequently encountered in the design of canal structures, diversion dams, and even cutlet works. Baffle blocks or appurtenances in the basin are of little value. Waves are the main source of difficulty and methods for coping with them are discussed in Section 4. The present information may prove valuable in that it will help to restrict the use of jumps in the 2.5 to 4.5 Froude mumber range. In many cases its use cannot be avoided, but in other cases, altering of dimensions may bring the jump into the desirable range.
4. No particular difficulty is encountered in the form shown on Figure 9 . Arrangements of baffles and sills will be found valuable as a means of shortening the length of basin.
5. As the Froude number increases, the fump becomes more sensitive to tail water depth. For numbers as low as 8 , a tail vater depth greater than the conjugate depth is advisable to be certain that the jump will stay on the apron. This phase will be discussed in more detail in the following sections.
6. When the Froude number is greater than 10, a stilling basin may no longer be the most economical dissipation device. The difference in conjugate depths is great, and, generally speaking, a very deep basin with high training walls is required. The cost of the stilling basin may not be commensurate with the results obtained. A bucket type of dissipator may give comparable results at less cost.

Water-surface Profiles and Pressures

Water-surface profiles for the jump on a horizontal floor were not measured as these hare already been deterrained by Bakhmeteff and Matzke, 1 Hewman and LaBoon, 19 and Moore. 2718 It has been shown by several experiwenters that the vertical pressures on the floor of the stilling basin are virtually the same as the water-surface profile would indicate. Although there will be moxe air entraiment and bulking in the prototype, making the freeboard of training walls 1 ess than indicated in the model, pressures obtained from models are sufficientiy accurete for design purposes.

Conclusions

The foregoing experiments and discussion serve to associate the Froude muber with stililing basin design where it offers many advantages. The ratio of conjugate depths, the length of jump, the type of: fump to be expected, and the losses involved have all been related to this muber. The principal advantege of this forzin of presentation is that one may see the entire picture at a glance. The foregoing information is basic to the understanding of the hydraulic jump. The following sections deal with the more practical aspects, such as modifying the jump by baffles and sills to increase stability and shorten the length.

An example follows which may help clarify the information so far presented.

Application of Results (Exsmple 1)

Water flowing under a sluice gate discharges into a rectanguLar stilling besin the same width as the gate. The average velocity and the depth of flow after contraction of the jet is couplete are: $V_{1}=85 \mathrm{ft} / \mathrm{sec}$ and $\mathrm{D}_{1}=5.6$ feet. Determine the conjugate tail water depth, the length of basin requined to confine the jump; the effectiveness of the basin to dissipate energy, and the type of jump to be expected.

$$
F_{1}=\frac{v_{1}}{\sqrt{8 D_{1}}}=\frac{85}{\sqrt{32.2 \times 5.6}}=6.34 .
$$

Entering Pigure 5 with this value

$$
\frac{D_{2}}{D_{1}}=8.5
$$

The conjuggte tail water depth

$$
D_{2}=8.5 \times 5.6=47.6 \text { feet }
$$

Entering the recomended curve on Figure 7 with a Froude mumber of 6.34

$$
\frac{L}{D_{2}}=6.13
$$

Length of besin necessary to confine the jump

$$
L=6.13 \times 47.6=292 \text { feet }
$$

Bntering Figure 8 with the above value of the Froude maber, it is found that the energy absorbed in the jump is 58 percent of the energy entering.

By consulting Figure 9 it is apparent that a very satisfiactory jump can be expected.

SECTION 2
STILLITGG BASIN FOR HIGH DAM AED RARITH DAM SPILLWAYS
ARD LARGE CARAL STRUCTURES
(BASII II)

INTPRODUCTIOA

Stilling basins are seldom designed to confine the entire length of the hydraulic jump on the paved apron as was assumed in the foregoing section; first, for economic reasons and secondly, beceuse there are means for modifying the Jump characteristics to obtain comparable or better performance in shorter lengths. It is possible to reduce the jump length by the installation of accessories such as blocks, brefles, and sills in the stilling basin. In addition to shortening the jump, the accessories exert a stabilizing effect and in some cases increase the factor of safety.

Section 2 concerns stilling basins which have been in cormon use on high dam and earth dam spillways, and large canal structures, and will be denoted as Basin II (Figure 10). The basin contains chute blocks at the upstream end and a dentated sill near the downstream end.耳o baifle piers are used in Basin II because of the relatively high relocities entering the fump. The principal aim was to (1).generalize the design, and (2) determine the range of operating conditions for which this basin is best suited. The first objective was not difficult as the Buresur has designed and constructed many of these basins, some of which were checked with models. The principal task consisted of consulting laboratory records and tabulating the results. To accomplish the second objective required additional laboratory experiments.

ANALYSIS OF EXISTIING DATA

Beginning with the first phase (i), the capacities and dimensions of 36 stilling basins for earth dams, sasill overflow dams and large canal structures, which have been tested by models, are listed in trable 2. The model studies were made in several laboratories by many individuals over a 23 -year period. Each individual was more or less free to experiment with models of tivese structures as he sex fit. The final designs, tabulated in Table 2, represent an agreement between designer and experimente. for each case. Thus, the tabulation should be ideal for selecting a generalized design for Basin II.

Results of Compilation

With the aid of Figure 10, most of the symbols used in Table 2 are self-explanatory. The use of baffle piers is limited to Basin III. Column 1 lists the reference material used in compiling the table. Column 2 lists the maximum reservoir elevation, column 3 the maximm tail water elevation, Column 5 the elevation of the stilling basin ploor, and Column 6 the maximum discharge for each spillway. Columa 4 indicates the height of the structure studied, showing a maximum fall from headwater to tail water of 179 feet, a minimum of 14 feet, and an average of 85 feet. Column 7 shows that the width of the stiling basins varied from $1,197.5$ to 20 feet. The discharge per foot of basin width, Column 8, varied from 760 to 52 cfs, with 265 as an average. The computed velocity, V_{1}, (hydraulic losses estimated in some cases), entering the stilling basin (Column 9) varied from 108 to 38 feet per second, and the depth of flow, D_{1}, entering the basin (Columm 10) varied from 8.80 to 0.60 feet. The value of the Froude number (Colum il) varied from 22.00 to 4.31. Colum 12 shows the actual depth of tail water above the stilling basin floor, which varied from 60 to 12 feet, while Column 14 lists the computed, or conjugate, tail water depth for each stilling basin. The conjugate depths, D_{2}, were obtained from Figure 5. The ratio of the actual tail water depth to the conjugate depth is listed for each basin in Column 15.

Tail water depth. The ratio of actual tail water depth to conjugate depth shows a maximum of 1.67, a minimum of 0.73, and an average of 0.99 . In other words, on the average, the basin floor was set to provide a tail water depth equal to the conjugate or necessary depth.

Chute blocks. The chute blocks used at the entrance to the stilling basin varied in size and spacing. Some basins contained nothing at this point, others a solid step, but in the majority of cases a serrated device, known as chute blocks, was utilized. The chute blocks at the upstream end of the basin tend to corrugate the jet, liftios a portion of it from the floor, resulting in a shorter length of jump than would be possible without them. These blocks also tend to improve the action in the jump. The proportioning of chate blocks has been the subject of mach discussion. The tabulation in Columins 19 through 24 of Table 2 shows the sizes which have been used. Colvimn 20 shows the height of the chute blocks, while Column 21 gives the ratio of height of block to the depth D_{1}. The ratios of height of block to D_{1} indicate a maximm of 2.72 , a minimum of 0.81 , and an average of 1.35 . This is somewhat higher than was shown to be necessary by the verification tests discussed later; a block equal to D_{1} in beight is sufficient.

The width of the blocks is shown in Colum 22. Colum 23 gives the ratio of width of the block to height, with a maxinam of 1.67, a minimum of 0.44 , and an average of 0.97 . The ratio of width of block to spacing, tabulated in Colum 24, shows a miximm of 1.91, a mininam of 0.95 , and an average of 1.15 . The three ratios indicate that the proportion: height equals vidth, equals spacing, equals D_{1} should be a satisfactory standard for chute block design. The wide variation shows that these dimensions are not critical.

Dentated sill. The sill in or at the end of the basin was either solid or had some form of dentated arrangement, as designated In Colum 25. A dentated sill located at the end of the spron is reconmended. The shape of the dentates and the angle of the sills varied considerably in the spiliways tested, Columns 26 through 31. The position of the dentated sill also varied and this is indicated by the ratio $\frac{X}{I_{I I}}$ in Column 26. The distance, X, is measured to the downstream edge of the sil1, as 111ustrated in Figure 10. The ratio $\frac{X}{I_{I I}}$ varied frow 1 to 0.65 , with an average of 0.97 .

The heights of the dentates are given in Colum 27. The ratio of height of block to the conjugate tail water depth is shown in Column 28. These ratios show a maximu of 0.37 , a minimm of 0.08 , and an average of 0.20 . The width to beight ratio, Colum 30, shows a maximum of 1.25 , a minimpm of 0.33 , and an average of 0.76 . The ratio of width of block to spacing, Column 31, shows a maximun of 1.91 , a miniman of 1.0 , and an average of 1.13 . Por the sake of generailization, the following proportions are recommended: (1) height of dentated $s 111=0.2 D_{2}$, (2) vidth of blocks $=0.15 D_{2}$, and (3) spacing of blocks $=$ $0.15 \mathrm{D}_{2}$, where D_{2} is the conjugate tail vater depth. It is recomended that the dentated sill be placed at the dornstream end of the apron.

Columns 32 through 38 show the proportions of additional baffle blocks used on three of the stilling besins. These are not necessary and are not recommended for this type of basin.

Additional details. Column 18 indicates the angle, with the horizontal, at which the high-velocity jet enters the stiling basin for each of the spillways. The maximan angle was 34° and the minimam 14*. The effect of the vertical angle of the chute on the action of the hydraulic fump could not be evaluated from the information available. This factor will be considered, however, in Section 5 in connection with sloping apron design.

Column 39 designates the cross section of the basin. In all but three cases the basins were rectangular. The three cross sections that were trapezoidal had side slopes varying from $1 / 4: 1$ to $1 / 2: 1$. The generalized designs presented in this report are for stilling basins with rectangular cross sections. Where trapezoidal basins are used, a model study is strongly recommended.

Designers have been concerned over the type of wing wall which should be used at the end of stilling basins. Colvm 40, Table 2, indicates that in the majority of basins constructed for earth dam spillways the wing walls were normal to the training walls. Five basins were constructed without wing walls using a rock blanket for protection. The remainder utilized angling wing walls or warped transitions downstream from the basin. The latter are common on canal structures. The object, of course, is to build the cheapest wing wall that will afford the necessary protection. The type of wing wall is usualiy dictated by local conditions such as width of the channel dormstream, depth to foundation rock, degree of protection needed, etc., thas wing walls are not amenable to generalization.

VERIFICAITON TESTS

It was early learned that the information on Table 2 did not cover the entire range of operating conditions desired. There was insufficient information to determine the length of basin for the larger values of the Froude number; there was little or no information on the tail water depth at which sweepout occurs, and the information available was of little value for generalizing water-surface profiles. It was, therefore, necessary to perform a set of experiments to extend the range and to supply the missing data. The experiments vere made on 17 Type II basins, proportioned according to the above rules, and installed in Flumes B, C, D, and E (see Column 1 and 2, Table 3). Each basin was judged at the discharge for which it was designed; the length was adjusted to the minimum that would produce satisfactory operation, and the absolute minimu tail water depth for acceptable operation was measured. The basin operation was also observed for plows less than the designed discharge and found to be satisfactory in each case.

Table 3 is quite similar to Table 2 with the exception that the length of basin LII (Columen 11) was determined by experiment, and the tail water depth at which the jump just began to sweep out of the basin was recorded (Colum 13).

Tail Water Depth

The solid line on Figure 11 was obtained from the hydraulic jump formala $\frac{D_{2}}{D_{1}}=1 / 2\left(\sqrt{1+8 r^{2}}-1\right)$ and represents conjugate tail water depth. It is the same as the line shown on Figure 5. The dash lines on Figure 11 are merely guides drawn for tail water depths other than conjugate depth. The points shown as dots were obtained from Column 13 of Table 2 and constitute the ratio of actual tail vater depth to D_{1} for each basin listed. It can be observed that the majority of the basins were designed for conjugate tail water depth or less. The miniman tail water depth for Basin II, obtained from Column 24 of Table 3, is shown on Figure 11. The curve labeled "Minimum TW Depth Basin II" indicates the point at which the front. of the jump moves array from the chute blocks. In other words, any additional lowering of the tail water would cause the jump to leave the basin. Consulting Figure 11 it can be observed that the margin of safety for a Froude muber of 2 is 0 percent; while for a mumber of 6 it increases to 6 percent, for a number of 10 it diminishes to 4 percent, and for a number of 16 it is 2.5 percent. To be certain that this is understood, it will be stated another vay. The jumip will no longer operate properly when the tail water depth approaches $0.98 \mathrm{D}_{2}$ for a Froude number of 2 or $0.94 \mathrm{D}_{2}$ for a number of 6 or $0,96 \mathrm{D}_{2}$ for a mumber of 10 , or $0.975 \mathrm{D}_{2}$ for a muber of 16 . The margin of safety is largest in the middle range. For the two extremes of the curve it is advisable to provide a tail water greater than conjugate depth to be safe. For these reasons the Type II basin should never be designed for less than conjugate depth and a minimm safety factor of 5 percent of D_{2} is recomended.

There are several other considerations in regard to tail water which are mentioned as a reminder. First, tail water curves are usually extrapolated for the discharges encountered in design, so they can be is error. Secondly, the actual tail water depth usually lags, in a temporal sense, thast of the tail vater curve for rising flow and leads the curve for a falling discharge. Ertra tail water should therefore be provided if reasonable increasing increments of discharge limit the performance of the structure because of a lag in building up tail water depth. Thirdiy, a tail water curve may be such that the most adverse condition occurs at less than the maxdmum designed discharge; and fourthly, temporary or permanent retrogression of the riverbed downstream may be a factor needing consideration. These factors, some of which are difficult to evaluate, are all important in stilling basin design, and suggest that on adequate factor of safety is essential. It is advisable to construct a jump height curve, superimposed on the tail water curve, for each basin to determine the most adverse operating condition. This procedure will be illustrated later.
的

The verification tests repeatediy demonstrated that there is no simple remedy for a deficiency in tail water depth. Increasing the length of basin, which is the remedy often attempted in the field, will not compensate for deficiency in tail water depth. For these reasons, care should be taken to consider all factors that may affect the tail water at a future date. A stilling basin that does not perform properly cannot be justified in the light of money saved by skimping, regardiess of the amount.

Length of Basin

The necessary length of Basin II, determined by the verification tests, is shown as the intermediate curve on Pigare 12. The squares indicate the test points (Colums 10 and 12 of Table 3). The black dots represent existing basins (Column 11 and 17, Table 2). Conjugate depth was used in the ordinate ratio rather than actual tail water depth since it could be computed for each case.

The dots scatter considerably but an average curve drawn through these points would be lower than the Basin II curve. In Fisure 12, therefore, it appears that in practice a basin about 3 times the conjugate depth is actually used when a basin about 4 times the conJugate is recommended from the verification tests. It should be remembered, however, that the shorter basins were all model tested and every opportunity was taken to reduce the basin length. The extent and depth of bed erosion, wave heights, favorable flood frequencies, flood duration and other factors were all used to Justify reducing the besin length. Lacking definite knowledge of this type in designing a basin for field construction without model tests, the longer basins indicated by the verification tests curve are recomended.

The Type II basin curve has been arbitrarily terminated at Froude number 4, as the jump may be unstable at lover mumbers. The chute blocks have a tendency to stabilize the jump and reduce the 4.5 limit discussed for Basin I. For basins having Froude mumbers belor 4.5 see Section 4.

Water-surface Profiles

Water-surface profiles were meacured during the tests to aid in computing uplift pressures under the basin apron. As the water surface in the stilling basin tests fluctuated rapidly it wras felt that a high degree of accuracy in measurement was not necessary. This was found to be true when the approximate water-surface profiles obtained were plotted, then generalized. It was foand that the profile in the basin could be closely approximated by a straight line making an angle α with the horizontal. This line can also be considered to be a pressure profile.

The angle \propto (Column 24, Table 3) observed in each of the verification tests has been plotted with respect to the Froude muber on Figure 13. The slope increases with the Froude mumber. To use the curve in Figure 13, a horizontal line is drawn at conjugate depth on a scale drawing of the basin. A vertical line is also drawn from the upstream face of the dentated sill. Beginning at the point of intersection, a sloping line is constructed as show. The above procedure gives the approximate water surface and pressure profile for conjugate tail water depth. Should the tail water depth be greater than D_{2}, the profile will resemble the uppermost line on Figure 13; the angle remains unchanged. This information applies only for the Type II basin, constructed as recommended in this section.

CONCIUSIONS

The following rules are recommended for generalization of Basin II, Figure 14:

1. Set apron elevation to utilize full conjugate tail water depth, plus an added factor of safety if needed. An additional factor of safety is advisable for both low and high values of the Froude mumber (see Figure 11). A minimum margin of safety of 5 percent of D_{2} is recomended.
2. Basin II may be effective down to a Froude mumber of 4 but the lower values should not be taken for granted (see Section 4 for values less than 4.5).
3. The length of basin can be obtained from the intermediate curve on Figure 12.
4. The beight of chate blocks is equal to the depth of flow entering the basin, or D_{1}, Figure 14. The width and spacing should be equal to approximately D_{1}; however, this may be varied to eliminate the need of fractional blocks. A space equal to $\frac{D_{1}}{c}$ is preferable along each wall to reduce spray and maintain desirable pressures.
5. The height of the dentated sill is equal to $0.2 D_{2}$, while the maximum width and spacing recormended is approximately $0.15 \mathrm{D}_{2}$. In this case a block is recomended adjacent to each side wall, Figure 14. The slope of the contimous portion of the end sill is 2:1. In the case of narrow basins, which would involve only a few dentates according to tire above rule, it is advisable to reduce the width and the spacing so long as this is done proportionately. Reducing the width and spacing actually improves the performance in narrow basins, thas, the minimm width and spacing of the dentates is governed only by structural considerations.

FIOURE IS

6. It is not necessary to stagger the chute blocks and the sill dentates. In fact this practice is usually inadvisable from a construction standpoint.
7. The verification tests on Basin II indicated no perceptible change in the stilling basin action with respect to the slope of the chute preceding the basin. The slope of chute varied from $0.6: 1$ to 2:1 in these tests, Columin 25, Table 3. Actually, the slope of the chate does have an effect on the hydraulic jump in some cases. This subject will be discussed in more detail in Section 5 with regard to sloping aprons. It is recommended that the sharp intersection between chute and basin apron, Figure 14, be replaced with a curve of reasonable radius ($R>4 D_{1}$) when the slope of the chate is $1: 1$ or greater. Chute blocks can be incorporated on the curved face as readily as on the plane surfaces.

Following the above rules will result in a safe, conservative stilling basin for spillways with fall up to 200 feet and for flows up to 500 cfs per foot of basin width, providing the jet entering the basin is reasonably uniform both as to velocity and depth. For greater falls, larger unit discharges, or possible asymaetry, a model study of the specific design is recommended.

Aids in Computation

Prepious to presenting an example illustrating the method of proportioning Basin II, a chart will be presented which should be of special value for preliminary computations, The chart makes it possible to determine V_{1} and D_{1} with a fair degree of accuracy, for chutes having slopes of $0.8: 1$ or steeper, where compatation is a difficult and arducus procedure. The chart presented as Figure 15 represents a composite of experience, computation, and a limitad amcunt of experimental information obtained from prototype tests on Shasta and Grand Coulee Dams. There is much to be desired in the way of experimental confirmation; however, it is felt that this chart is sufficiently accurate for preliminary design. A concerted effort will be made to obtain additional experimental information whenever possible.

The ordinate on Figure 15 is fall from reservoir level to stilling basin floor, while the abscissa is the ratio of actual to theoretical velocity at entrance to the stilling basin. The theoretical velocity $\mathrm{V}_{\mathrm{T}}=\sqrt{2 \mathrm{~g}(\mathrm{Z}-\mathrm{H} / 2)}$ (see Figure 15). The actual velocity is the term desired. The curves represent different heads, H, on the crest of the spillway. As is reasonable, the larger the hesd on the crest, the more nearly the actual velocity at the base of the spillway will approach the theoretical. For example, with $H=40$ feet and $Z=230$ feet, the actual velocity at the base of the dam would be 0.95 of the computed theoretical velocity; while with a head of 10 feet on the crest:, the actual velocity would be 0.75 VT. The value of D_{1} is computed by dividing the unit discharge by the actual velocity obtained from Figure 15.

FIGURE IS

The chart is not applicable for chutes flatter than 0.6:1 as frictional resistance assumes added importance in this range. Therefore, it will be necessary to compute the draw-dorm curve as usual starting at the gate section where critical depth is knom.

Insufflation, produced by air from the atmosphere mixing with the sheet of water during the fall, need not be considered in the hydraulic fump computations. Insufflation need be considered principaliy in the design of chute and stilling basin walls. It is not possible to construct walls sufficiently high to confine all spray and splash; thons, the best that can be hoped for is a height that is reasonable and commensurate with the mateirial and terrain to be protected.

Application of Results (Example 2)

The crest of an overfall dan, having a downstrean slope of $0.7: 1$, is 200 feet above the horizontal floor of the stilling basin. The head on the crest is 30 feet and the maximm discharge is 480 cfs per foot of stilling basin width. Proportion a Type II stiling basin for these conditions.

Entering Figure 15 with a head of 30 feet over the arest and a total fall of 230 feet,

$$
\frac{V_{A}}{V_{T}}=0.92
$$

The theoretical velocity $V_{T}=\sqrt{2 g\left(230-\frac{30}{2}\right)}=117.6 \mathrm{ft} / \mathrm{sec}$
The actual velocity $V_{A}=V_{1}=117.6 \times 0.92=108.2 \mathrm{ft} / \mathrm{sec}$

$$
D_{1}=\frac{q}{V_{1}}=\frac{480}{108.2}=4.44 \text { feet }
$$

The Froude mumber

$$
F_{1}=\frac{V_{1}}{\sqrt{6_{1}}}=\frac{108.2}{\sqrt{32.2 \times 4.44}}=9.04
$$

Enterine Figure 11 with a Froude number of 9.04 , the solid line gives,

$$
\frac{T W}{D_{1}}=12.3
$$

As IW and D_{2} are synomomous in this case, the conjugate tail water depth,

$$
D_{2}=12.3 \times 4.44=54.6 \text { feet }
$$

The minimum tail water line for the Type II basin on Figure 11 shows that a factor of safety of about 4 percent can be expected for the above Froude number.

Should it be desired to provide a margin of safety of 7 percent, the following procedure may be followed: Consulting the line for minimam TM depth for the Type II besin, Figure II,

$$
\frac{T W}{D_{1}}=11.85 \text { for a Proude number of } 9.04
$$

The tail water depth at which sweepout is incipient:

$$
T W_{S O}=11.85 \times 4.44=52.6 \text { feet }
$$

Adding 7 percent to this figure, the stilling basin apron should be positioned for a tail water depth of

$$
52.6+3.7=56.3 \text { feet or } 1.03 \mathrm{D}_{2}
$$

The length of basin can be obtained by entering the intermediate curve on Figure 12 with the Froude muber of 9.04.

$$
\frac{I_{I I}}{D_{2}}=4.28
$$

$$
L_{\text {II }}=4.28 \times 54.6=234 \text { feet (see Figure 14) }
$$

The height, width, and spacing of the chute blocks as recommended is D_{1}, thus the ilmension can be 4 feet 6 inches.

The height of the dentated sill is $0.2 D_{2}$ or 11 feet, while the width and spacing of the dentates can be $0.15 \mathrm{D}_{2}$ or 8 feet 3 inches.

SECTION 3

SHORT STIILITIG BASIN FOR CANAL STRUCTURES, SMALL OUTIET WORKS, ARD SMALL SPIILWAYS
(BASIN III)

INIRODUCTION

Basin II often is considered too conservative and consequently overcostiy for structures carrying small discharges at moderate velocities. This can be especially true in the case of canal chutes, drops, wasteways, and other atructures which are constructed by the dozen on canal systems. Any saving that can be effected in decreasing the aize of these structures can amount to a sizable sum when maltiplied by the number of structures involved. There is, of course, another consideration which should be kept in mind. If the dimensions of a particular structure are reduced to the point where it no longer operates satisfactorily, this mistake will be repeated many times over. In this section a generalized design is developed for a class of smaller structures in which the velocity at the entrance to the basin is moderate or low (5 to 60 feet per second, corresponding to an overall head of about 100 feet). Purther economies in basin length are accomplished with baffle piers.

DEVELOFNEMTI

The most effective way to shorten a stilling basin is to modify the jump by the addition of appurtenances in the basin. One restriction imposed on these appurtenances, however, is that they must be self-cleaning or nonclogging. This restriction thas limits the appurtenances to blocks or sills which can be incorporated on the stilling basin apron.

The Department of Agriculture 816 developed a very short stilling basin designated "The SAF Basin," for use on drainage structures such as the Soil Conservation Service constructs. The SAF basin, Figure 16, fits the needs for which it was developed but does not provide the factor of aafety necessary for Bureau use. This was demonstrated by constructing and testing several basins proportioned to SAF specifications. It was discovered, however, that the arrangement of this basin had excellent possibilities, and that by changing dimensions, such as the length, the tail water depth, the height and location of the baffle blocks, etc., the desired degree of conservatism could be obtained.

FIGURE 16

HYDRAULIC JUMP STUDIES SAF STILLING BASIN

In addition to the foregoing tests, mumerous experiments were performed using various types and arrangements of baffle blocks on the apron in an effort to obtain the best possible solution. Same of the baffle blocks tried are shown on Figure l7. The blocks were positioned in both single and double rows with the second row staggered with respect to the first. Arrangement ${ }^{a \prime \prime}$ on Pigure 17 consisted of a solid bucket sill which was tried in several positions on the apron. This sill required an excessive tail water depth to be effective. The solid sill was then replaced with blocks and spaces. For certain heights, widths, and spacing, block "b" performed quite well, resulting in a water surface similar to that shown on Figure 20. Block "c" was ineffective for any height. The velocity passed over the block at about a 45° angle, thus was not impeded, and the water surface downstream was very turbulent with waves. The stepped block "d" was also ineffective both for a single row and a double row. The action was mach the same as for "c." The cube " e " was effective when the best height, width, spacing, and position on the apron were found. The front of the Jump was almost vertical and the water surface dowstrean was quite flat and smooth, much like the water surface shown on Figure 20. Block "f," which is the same shape used in the SAF basin, performed identically with the cubical block "e." The important feature as to shape appeared to be the vertical upstream face. The foregoing blocks were arranged in single and double rows. The second row in each case was of little value, sketch "h," Figure 17.

Block " g " is the same as block " f " with the corners rounded. It was found that rounding the corners greatly reduced the effectiveness of the blocics. In fact a double row of blocks with rounded corners did not perform as well as a single row of blocks "b," "e," or "P. " As block "f" is usually preferable from a construction standpoint, it was used throughout the remaining tests to determine a general design with respect to height, width, spacing, and position on the apron.

In addition to experimenting with the baffle blocks, variations were tried with respect to the size and shape of the chate blocks and the end sill. It was found that the chate blocks should be kept small, no larger than D_{1}, if possible. The end sill had little or no effect on the jump proper then baffle piers are placed as recommended. The basin as finally developed is shown on Figure 18. This basin is principally an impact dissipation device whereby the baffle blocks are called upon to do most of the work. The chate blocks aid in stabilization of the jump and the solid type end sill is for scour control.

FIGURE 17

VERIFICAIION TESTS

At the conclusion of the development work, a set of verification tests was made to examine and record the performance of this basin, which will be designated as Basin III, over the entire range of operating conditions that may be met in practice. The tests were made on a total of 14 basins constructed in Flumes B, C, D, and E. The conditions under which the tests were run, the dimensions of the basin, and the results are recorded on Table 4. The headings are identical with those of Table 3 except for the dimensions of the baffle blocks and end sills. The additional symbols can be identified from Figure 18.

STILLING BASIM PERFORMANCE AND DESIGN

Stiling basin action was quite stable for this design; in fact, more so than for either Basins I or II. The front of the jusp was steep and there was less wave action to contend with downstream than in either of the former basins. In addition, Basin III has a large factor of safety against jump sweepout and operates equally well for all values of the Froude mumber above 4.0. The verification tests served to show that Basin III was very satisfactory.

Basin III should not be used where baffle piers will be exposed to velocities above the 50 to 60 feet per second range without the full realization that cavitation and resulting damage may occur. For velocities above 50 feet per second Basin II or hydraulic model studies are recommended.

Chute Blocks

The recommended proportions for Basin III are show on Figure 18. The height, width, and spacing of the chate blocks are equal to D_{1}, the same as was recommended for Basin II. Larger heights were tried, as can be observed from Column 18, Table 4, but are not recommended. The larger chute blocks tend to throw a portion of the high-velocity jet over the baffle blocks. Some cases : ill be encountered in design, however, where D_{1} is less than 8 inches. In such cases the blocks may be made 8 inches high, which is considered by some designers to be the minimum size possible from a construction standpoint. The width and spacing are the same as the height, but this may be varied so long as the aggregate width of spaces approximately equals the total width of the blocks.
Tablo 4

The height of the bafrle blocks increases with the Proude number as can be observed from Columns 22 and 10, Table 4. The height, in terms of D_{1}, can be obtained from the upper ine on Figure 19. The width and spacing can vary so long as the total spacing is equal to the total width of blocks. The most satisfactory width and spacing were found to be three-fourths of the height. It is not necessary to stagger the baffle blocks with the chute blocks as this is often difficult and there is little to be gained from a hydraulic standpoint.

The baffle blocks are located $0.8 D_{2}$ downstream from the chute blocks as shown in Figure 18. The actual positions used in the verification tests are shown in Column 25, Table 4. The position, height and spacing of the baffle blocks on the apron should be adhered to carefully, as these dimensions are important. For example, if the blocks are set appreciably upstream from the position show, they will produce a cascade with resulting wave action. On the contrary, if the blocks are set farther downstream than shown, a longer basin will be required. Likewise, if the baffle blocks are too high, they can produce a cascade, while if too low a rough water surface will result. It is not the intention to give the impression that the position or height of the baffle blocks are critical. Their position or height are not critical so long as the above proportions ere followed. There exists a reasonable amount of leeway in all directions; horrever, one cannot place the baffle blocks on the pool floor at random and expect anything like the excellent action associated with the Type III basin.

The baffle blocks may be in the form shown on Figure 18, or they may be cubes; either shape is effective. The corners of the baffle blocks are not rounded, as the sharp edges are effective in producing eddies which in turn aid in the dissipation of energy. It is advisable to place reinforcing steel back at least 6 inches from the block surfaces when possible, as there is some evidence that steel placed close to the surface aids spalling.

End Sill
The height of the solid end sill is also shown to vary with the Froude number although there is nothing critical about this dimension. The heights of the sills used in the verification tests are shown in Columns 27 and 28 of table 4. The height of the end sill in terms of D_{1} is plotted with respect to the Froude number and shown as the lower line on Figure 19. A slope of $2: 1$ was used throughout the tests.

FIGURE I9

Tail Water Depth

The SAF rules suggest the use of a tail water depth less than full conjugate depth, D_{2}. As in the case of Basin II, full conjugate depth, measured above the apron, is also recommended for Basin III. There are several reasons for this statement: First, the best operation for this stilling basin occurs at full conjugete tail water depth; secondly, if less than the conjugate depth is used, the surface velocities leaving the pool are high, the jump action is impaired, and there is a greater chance for scour downstream; and thirdiy, if the baffle blocks erode with time, the additional tail water depth will serve to lengthen the interval between repairs. On the other hand, there is no particular advantage to using greater than the conjugate depth, as the action in the pool will show little or no improvement.

The margin of safety for Basin III varies from 15 to 18 percent depending on the value of the Froude mumber, as can be observed by the dotted line labeled, "Minimum Tail Water Depth--Basin III," on Figure 11. The points, from which the line was drawn, were obtained from the verification tests, Columns 10 and 14, Table 4. Again, this line does not represent complete sweepout, but the point at which the front of the jump moves away from the chute blocks and the basin no longer functions properly. In special cases it may be advisable to encroach on this wide margin of safety, however, it is not advisable as a general rule for the reasons stated above.

Length of Basin

The length of Basin III, which is related to the Froude mumber can be obtained by consulting the lower curve on Figure 12, page 37. The points, indicated by circles, were obtained from Columns 10 and 12 , Table 4, and indicate the extent of the verification tests. The length is measured from the downstream side of the chute blocks to the downstream edge of the end sill, Figure 18. Although this curve was determined conservatively, it will be found that the length of Basin III is less than one-half the length needed for a basin without appurtenances. Basin III, as was true of Basin II, may be effective for values of the Frouide number as low as 4.5 , thas the length curve was terminated at this value.

Water Surface and Pressure Profiles

Approximate watermsurface profiles were obtained for Basin III during the verification tests. The front of the jump was so stecp, Fighre 20, that only two measurements were necessary-the tail water depth and the depth upstream from the baffle blocks. The tail water depth is shown in Column 6 and the upstream depth is recorded in Column 29 of Table 4. The ratio of the upstream depth to conjugate depth is shown in Colum 30. As can be observed, the ratio is mach the same regardless of the value of the Froude number. Fhe average of the ratios in Colnm 30 13 0.52 . Thas it will be assumed that the depth upstrean from the baffle blocks is one-half the tail water depth.

The profile represented by the crosshatched area, Figure 20, is for conjugate tail water dep+h. For a greater tail water depth D_{2}, the upstream depth would be $\frac{D_{Z}}{2}$. For a tail water depth less than conJugate, D_{y}, the upstream depth would be approxinately $\frac{D_{y}}{2}$. There appears to be no particular significance to the fact that this ratio is one-hale.

The information on Figure 20 applies only to Basin III, pro= portioned according to the rules set forth. It can be assumed that for all practical purposes the pressure and water-surface profiles are the same. There will be a localized increase in pressure on the spron immediately upstream from each baffle block but this has been taken into account, more or less, by extending the diagram to full tail mater depth beginning at the upstrean face of the baffle blocks.

RECOMMEIDAAIONS

The following rules pertain to the design of the Type III basin, Figure 18:

1. The stilling basin operates best at full conjugate tail water depth, D_{2}. A reasonable factor of safety is involved at conjugate depth for all values of the Froude number (Figure 11), but it is recommended that the designer not make a general practice of encroaching on this margin of safety.
2. The length of pool, which is less than one-half the length of the natural fump, can be obtained by consulting the curve for Basin III on Figure 12.
3. Stiliing Basin III may be eifective for values of the Froude number as low as 4.0 but this cannot be stated for certain (consult Section 4 for values under 4.5).
4. Height, width, and spacing of chate blocks should equal the average depth of flow entering the basin, or D_{1}. Width of blocks may be decreased, providing spacing is reduced a like amount. Should D_{1} prove to be less than 8 inches, make the blocks 8 inches high.
5. The height of the baffle blocks varies with the Proude number and is given on Figure 19. The blocks may be cubes or they may be constructed as shown on Figure 18 so long as the upstream face is vertical and in one plane. This feature is important. The width and spacing of baiflle blocks are also shown on Figure 18. In narrow structures where the specified width and spacing of blocks do not appear practical, block width and spacing may be reduced, providing they are reduced a like amount. A half space is recomended adjacent to the walls.
6. The upstream face of the baffle blocks should be set at a distance of 0.80_{2} from the dormstream face of the chute blocks (Figure 18). This dimension is also ingortant.
7. The height of the solid sill at the end of the basin can be obtained from Figure 19. The slope is $2: 1$ upward in the direction of flow.
8. There is no need to round or streamline the edges of the chute blocks, end sill or baifle piers. Streamining of baffle piers may result in loss of half of their effectiveness. Small chamfers to prevent chipping of the edges is permissible.
9. As a reminder, a condition of excess tail water depth does not justify shortening the basin length.
10. It is recommended that a radius of reasonable length ($R \equiv \frac{4 D_{1}}{}$) be used at the intersection of the cbute and basin apron for slopes of 45° or greater.
11. As a general rule the slope of the chute has little effect on the jump unless long flat slopes are involved. This phase will be considered in Section 5 on sloping aprons.

As the Type III besin is short coupled, the above rules should be followed closely for its proportioning. If the proportioning is to be varied from that recommended, or if the limits given below are exceeded, a model study is advisable. Arbitrary limits for the Type III basin are set at 200 cfs per foot of basin width, or 100 feet of fall, until experience demonstrates otherwise.

Application of Results (Example 3)

Given the following computed values for a small overflow dam

Q cfs	q cfs	∇_{1} ft/sec	D_{1} 3,900
3,090	78.0	69	$\underline{f t}$
2,022	61.8	66	1.130
662	40.45	63	0.936
	13.25	51	0.642
			0.260

and the tail water curve for the river, identified by the solid line on Pigure 21, proportion a Type III basin for the most adverse condition utilizing full conjugate tail water depth. The flow is aymmetrical and the width of the basin is 50 feet. (The parpose of this example is to demonstrate the use of the jump height curve.)

The Pirst step is to compute the jump height curve. As V_{1} and D_{1} are given, the Froude number is computed and tabulated in Colvian 2, Table 5, below:

Table 5

$\begin{gathered} \text { Q } \\ \frac{c f_{s}}{(1)} \end{gathered}$	$\frac{F_{1}}{(2)}$	$\frac{D_{2}}{D_{1}}\left(\frac{1}{3}\right)$	$\frac{D_{1}}{\left(\frac{f t}{4}\right)}$	$\frac{D_{2}}{\frac{f t}{(5)}}$	Jump height elevation	
					Curve a	Curve al
					(6)	(7)
3,900	11.43	15.75	1.130	17.80	617.5	615.0
3,090	12.02	16.60	0.936	15.54	615.2	612.7
2,022	13.85	19.20	0.642	12.33	612.0	609.5
662	17.62	24.5	0.260	6.37	606.1	603.6

Entering Figure 11 (page 35) with these values of the Froude mumber values of $\frac{T W}{\bar{D}_{1}}$ are obtained for conjugate tall water depth from the solid 11ne. These values are also $\frac{D_{2}}{D_{1}}$ and are shown listed in Column 3. The confugate tail water depths for the various alscharges, Column 5, were obtained by maltiplying the values in Column 3 by those in Columa 4.

If it were assumed that the most adverse operating condition occurs at the maximun discharge of $3,900 \mathrm{cfs}$, the stilling basin apron should be placed at elevation $617.5-17.8$ or elevation 599.7 .

With the apron at elevation 599.7 the tail water required for conjugate tail water depth for each discharge would follow the elevations listed in Column 6. Plotting Columns 1 and 6 on Figure 21 results in turve a, which shows that the tail water depth is inadequate for all but the maximum discharge.

The tail vater curve is unusual in that the most adverse teil water condition occurs at a discharge of approximately 2,850 cfs rather than maximum. As full conjugate tail water depth is desired for the most adverse tail water condition, it is necessary to shift the jump height curve downand to match the tail water curve for a discharge of 2,850 cfs (see Curve a', Figure 21). The coordinates for Curve al are given in Columens 1 and 7, Table 5. This will place the besin floor 2.5 feet lover, or elevation 597.2 feet, as shown in sketch on Figure 21.

Although the position of the basin floor was set for a discharge of $2,850 \mathrm{cfs}$, the remaining details are proportioned for the maximom discharge 3,900 cfs.

Entering Figure 12, page 37, with a Froude number of 11.42,

$$
\frac{L_{I I I}}{D_{2}}=2.75, \text { and the length of }
$$

basin required $I_{\text {III }}=2.75 \times 17.80=48.95$ feet.
(Notice that conjugate depth was used, not tail water depth.)
The height, width, and spacing of chorte blocks are equal to D_{1} or 1.130 feet (use 13 or 14 inches).

The height of the baffle blocks for a Froude uumber of 11.42 (Figure 19, page 53) is $2.5 D_{1}$.

$$
h_{3}=2.5 \times 1.130=2.825 \text { feet (use } 34 \text { inches). }
$$

The width and spacing of the baffle blocks are preferably three-fourtins of the height or

$$
0.75 \times 34=25.5 \text { inches. }
$$

From Figure 18 (page 49), the upstrean face of the baffle blocks should be $0.8 D_{2}$ from the dounstream face of the chute blocks, or

$$
0.8 \times 17.80=14.24 \text { feet. }
$$

The height of the solid end sill (Pigure 19, page 53) is $1.60 \mathrm{D}_{1}$, or

$$
b_{4}=1.60 \times 1.130=1.81 \text { feet (use } 22 \text { inches). }
$$

The final dimensions of the basin are shown on Figure 21, page 59.

SECTION 4
 STILLIMG BASIN DESIGN AND WAVE SUPPRESSORS FOR CAIAL STRUCTURES, OUTLET WORKS ARI DIVERSION DAMS

(BASIN IV)

INPRODUCTION

In this section the characteristics of the hydraulic jump and the design of an adequate stiiling basin for Froude numbers between 2.5 and 4.5 are discussed. This range is encountered principaily in the design of canal structures, but occasionally diversion dams and outlet works fall in this category. In the 2.5 to 4.5 Froude number range, the jump is not fully developed and the previously discussed methods of design do not apply. The main problem concerns the waves created in the hydraulic jump, making the design of a suitable wave suppressor a part of the stilling basin problem.

Four means of reducing wave heights are discussed. The first is an integral part of the ε^{i} illing basin design and should be used only in the 2.5 to 4.5 Froude number range. The second may be considered to be an alternate design and may be used over a greater range of Froude numbers. These types are discussed as a part of the stilling basin design. The third and fourth devices are considered as appurtenances which may te included in an original design or aided to an existing structure. Also, they may be used in any open channel flow-way without consideration of the Froude number. These latter devices are described under the heading Wave Suppressors.

JURP CEARACTERISTICS-OFROUDE MMBER 2.5 TO 4.5
For low values of the Froude number, 2.5 to 4.5 , the entering jet oscillates intermittently from bottow to surface, as indicated in Figure 9B, page 22, with no particular period. Each oscillation generates a wave which is difficult to dampen. In narrow structures, such as canals, waves may persist to some degree for miles. As they encounter obstructions in the canal, such as bridge plers, turnoutis, checks, and transitions, reflected waves may be generated which tend to dampen, modify, or intensify the original wave. Waves are destructive to earth-lined canals and riprap and produce undesirable surges at gaging stations and in measuring devices. Structures in this range of Froude numbers are the ones that require the most maintenance. In fact, it has been necessary to replace or rebuild a number of existing structures in this category.

On wide structures, such as diversion dams, wave action is not as pronounced since the waves can travel laterally as well as parallel to the direction of flow. The combined action produces some dampening effect but also results in a choppy water surface. These waves may or may not be dissipated in a short distance. Where outlet works, operating wnder heads of 50 feet or greater, fall within the range of Froude numbers between 2.5 and 4.5 , a model study of the stilling basin is imperative. A model study is the only means of including preventive or corrective devices in the structure so that proper performance can be assured.

SIILLIIG BASIN DESIGN--FRCUDE NUMBER 2.5 TO 4.5

Development Tests

The best way to combat a wave problem is to eliminate the wave at its source; in other words, concentrate on altering the condition which generates the wave. In the case of the stilling basin preceded by an overfall or chute, two schemes were apparent for eliminating waves at their source. The first was to break up or eliminate the entering jet, shown on Figure 9B, by opposing it with directional jets deflected from baffle piers or sills. The second was to bolster or intensify the roller, shown in the upper portion of Figixe 9B, by directional jets deflected from large chate blocks.

The first method was unsuccessful in that the number and sime of appurtenances necessary to break up the roller occupied so mach volume that these in themselves posed an obstruction to the flow. This conclusion was based wn tests in which various shaped baffle blocks and guide blocks were systematically placed in a stiling basin in combina. tion with mumerous types of spreader teeth and deflectors in the chute. The program involved dozent of tests, and not until all conceivable ideas were tried was this approach abandoned. A few of the basic ideas tested are shown on Figure $2 \uparrow, a, b, c, f, g$, and h.

Final Tests

Deflector blocks. The siscond approach, that of attempting to intensify the roller, yielded betcer results. In this case, large blocks were placed well up on the chate, while nothing was installed in the stilling basin proper. The object in this case was to direct a jet at the base of the roller in an attempt to strengthen it. After a number of trials, the roller was actually intensified which did improve the stability of the jump. Sketches d and e on Figure 22 indicate the only schemes that showed promise, although many variations were tried. After finding an arrangement that was effective, it was then attempted to make the field construction as simple as possible. The dimensions and proportions of the deflector blocks as finally adopted are shown on Figure 23.

FIGURE 22

The object in the latter scheme was to place as few appurtenances as possible in the path of the flow, as volume occupied by appurtenances helps to create a backwater problem, thus requiring higher training walls. The muber of deflector blocks shown on Figure 23 is a minimum requirement to accomplish the purpose set forth. The width of the blocks is shown equal to D_{1} and this is the maximum Width recommended. From a hydraulic standpoint it is desirable that the blocks be constructed narrower than indicated, preferably $0.75 \mathrm{D}_{1}$. The ratio of block width to spacing should be maintained as 1:2.5. The extreme tops of the blocks are DD_{1} above the floor of the stilling basing The blocks may appear to be rather ingh and, in some cases, extramely long, but this is essontial as the fet mast play at the base of the roller to be effective. To accommodate the various slopes of chutes and ogee shapes encountered, a rule has been established that the horizontal length of the blocks should be at least DD_{1}. The upper surface of each block is sloped at 5° in a downstream direction as it was found that this feature resulted in better operation, especially at the lower discharges.

Tail water depth. A tail water depth 5 to 10 percent greater than the conjugate depth is strongly recommended for the above basin. Since the jump is very sensitive to tail water depth at these how values of the Froude mumber, a slight deficiency in tail water depth may allow the jump to sweep completely out of the basin. Many of the difficulties that have been encountered in small field structures in the past can be attributed to this aspect of the jump for low numbers. In addition, the jump performs much better and wave action is diminished if the tail water depth is increased to approximately $1.1 D_{2}$.

Basin length and end sill. The length of this basin, which is relatively short, can be obtained from the upper curve on Figure 12. No additional blocks or appurtenances are needed in the basin, as these vill prove a greater detriment than aid. The addition of a small triangular sill placed at the end of the apron for scour control is desirable.

Performance. If designed for the maximm discharge, this stilling basin will perform satisfactorily for all flows. Waves below the stilling basin will still be in evidence but will be of the ordinary variety usually encountered with jumps of a higher Froude number. This design is applicable to rectangular cross sections only.

ALTEREATEE STILLING BASII DESIGN--SMALL DROPS

Performance

An alternate basin for reducing wave action at the scrurce for values of the Froude number between 2.5 and 4.5 is applicable to small drops in canals. The Froude number in this case would be computed the same as though the drop were an overflow crest. A series of steel rails, channel irons or timbers in the form of a grizzly are instailed at the drop, as shown on Figure 24. The overialling jet is separated into a number of long, thin sheets of water which fall nearly vertically into the canal below. Energy dissipation is excellent and the usual wave problem is avoided. If the rails are tilted downward at an angle of 3° or more, the grid is self-cleaning.

Design
Two spacing arrangements were tested in the laboratory: in the first, the spacing was equal to the width of the beams, and in the second, the spacing was two-thirds of the beam width. The latter was the more effiective. In the first, the length of grizzly required was about 2.9 times the depth of flow (\mathbf{y}) in the canal upstream, while in the second, it was necessary to increase the length to approximately 3.6y. The following expression can be used for computing the length of grizely:

$$
\begin{equation*}
L G=\frac{Q}{C W H \sqrt{2_{\mathrm{gy}}}} \tag{4}
\end{equation*}
$$

where Q is total discharge, C is an experimental coefficient, W is the width of spacing in feet, N is the number of spaces, g is the acceleration of gravity and y is the depth of flow in the canal upstream (see Figure 24). The value of \mathbf{C} for the two arrangements tested was 0.245 .

In this case the grizzly makes it poseible to avoid the hydraulic jump. Should it be desired to maintain a certain level in the canal upstream, the grid may be tilted upward to act as a check; however, this arrangement may pose a cleaning problem.

WAVE SUPPRESSORS

The two stilling basins described in the first part of Section 4 may be considered to be wave suppressors, although the suppressor effect is obtained from the necessary features of the stilling basin. If greater wave reduction is required on a proposed structure, or if a wave suppressor is required to be added to an existing flow-way, the two types discussed below may prove useful. Both of these types are applicable to most open channel flow-ways having rectangular, trapezoidal,

or other cross-sectional shapes. The first or raft type may prove more economical than the second or underpass type, but rafts may not provide the degree of wave reduction obtainable with the underpass type. Both types may be used without regard to the Froude number.

Raft Type Wave Suppressor
In a structure of the type shown in Figure 25, there are no means for eliminating waves at their source. Teats showed that appurtenances in the stilling basin merely produced severe splashing and created a backwater effect, resulting in subm rged flow at the gate for the larger flows. Submerged flow reduced the effective head on the structure, and in turn, the capacity. Tests on several suggested devices showed that rafts provided the best answer to the wave problem when additional submergence could not be tolerated. The general arrangement of the tested structure is shown in Figure 25. The Froude number varied from 3 to 7, depending on the head behind the gate and the gate cpening. Velocities in the canal ranged from 5 to 10 feet per second. Waves were 1.5 feet high, measured from trough to crest.

During the course of the experiments a number of rafts were tested; thick rafts with iongitudinal slots, thin rafts made of perforated steel plate, and otbers, both floating and fixed. Rigid and articulated rafts were tested in various arrangements.

The most effective raft arrangement consisted of two rigid stationary rafts 20 feet long by 8 feet wide, made from 6- by 8 -inch timbers, placed in the canal downstream from the stilling basin (Figure 25). A space was left between timbers and lighter cross pieces were pilaced on the rafts parallel to the flow, giving the appearance of many rectangular holes. Several essential requirements for the raft were apparent: (1) that the rafts be perforated in a regular pattern; (2) that there be some depth to these holes; (3) that at least two rafts be used; and (4) that the rafts be rigid and held stationary.

It was found that the ratio of hole area to total area of raft could be from $1: 6$ to $1: 8$. The 8 -foot width, W on Figure 25, is a minimum dimension. The rafts must have sufficient thickness so that the troughs of the waves do not break free from the underside. The top surfaces of the rafts are set at the mean water aurface in a fixed position so that they cannot move. Spacing between rafts should be at least three times the raft dimension, measured parallel to the flow. The first raft decreases the wave height about 50 percent, while the second raft effects a further reduction. Surges over the raft dissipate themselves by flow downard through the holes. For tilis specific case the wares were reduced from 18 to 3 inches in height.

Under certain conditions wave action is of concern only at the maximum discharge when freeboard is endangered, so the rafts can be a permanent installation. Should it be desired to suppress the waves at partial flows, the raits may be made adjustable, or, in the case of trapezoidal channels, a second set of rafts may be placed under the first set for partial flows. The rafts should perform equally weil in trapezoidal as well as rectangular channels.

The recomended raft arrangement is also applicable for suppressing waves with a regular period such as wind waves, waves produced by the starting and stopping of pumps, etc. In this case, the position of the downstream raft is important. The second raft should be positioned downstream at some fraction of the wave length. Placing it at a full wave lengti could cause both rafts to be ineffective. Thas, for narrow canals it may be advisable to make the second raft portable. Iowever, if it becomes necessary to make the rafts adjustable or portable, or if a moderate increase in depth in the stilling basin can be tolerated, cunsideration should be given to the type of wave suppressor discussed below.

Underpass Type Wave Suppressor

General description. By far the most effective wave dissipator is the short-tube type of underpass suppressor. The name "short-tube" is used because the structure has many of the characteristics of the short-tube discussed in hydraulics textbooks. This wave suppressor may be added to an existing swucture os. included in the original construction. In either case it provides a sightly structure, permanent in nature, which is economical to construct and effective in operation.

The recomendations for this structure are based on three separate model investigations, each having different flow conditions and wave reduction requirements.

Essentially, the structure consists of a horizontal roof placed in the flow channel with a headwall sufficiently high to cause all fiow to pass beneath the roof. The height of the roof above the channel floor may be set to effectively reduce wave heights for a considerable range of flows or channel stages. The length of the roof, however, determines the amount of wave suppression obtained for any particular roof setting.

Performance. The effectiveness of this wave suppressor is illustrated in Figure 26. In this instance it was desirea to reduce wave heights entering a lined canal to prevent overtopping of the conal lining at near maximum discharges. Below 3,000 second-feet, waves were in evidence but did not overtop the lining. For larger discharges, however, the stilling basin produced moderate waves which were actually intensified by the short transition between the basin and the cansl.

Without suppressor - waves overtop canal.

Suppressor in plac - Length $1.3 \mathrm{D}_{2}$, submerged 30 percent

Performance of Underpass Wave Suppressor

These intensified waves overtopped the lining at 4,000 second-feet and became a real problem at 4,500 second-feet. Anxiety developed when it became known that water demands would soon require 5,000 second-feet, the design capacity of the canal. Tests were made with a suppressor 21 feet long using discharges from 2,000 to 5,000 second-feet. The suppressor was located between the stilling basin and the canal.

Figure 27, Test 1, shows the results of tests to determine the optimum opening between the roof and the channel floor using the maximan discharge, 5,000 second-feet. With a $14-f 00 t$ opening, waves were reduced from about 8 feet to about 3 feet. Waves were reduced to less than 2 feet with an opening of 11 feet. Smaller openings produced less wave height reductions, due to the turbulence created at the underpass exit. Thas, it may be seen that an opening of from 10 to 12 feet produced optimum results.

With the opening set at 11 feet the suppressor effect was then determined for other discharges. These results are shown on Figure 27, Test 2. Wave height reduction was about 78 percent at 5,000 second-feet, increasing to about 84 percent at 2,000 second-feet. The device became ineffective at about 1,500 second-feet when the depth of flow became less than the height of the roof.

To determine the effect of suppre:sor length on the wave reduction, other factors were held constant while the length was varied. Tests were made on suppressors 10, 21, 30, and 40 feet long for discharges of 2, 3, 4, and 5 thousand second-feet, Figure 27, Test 3. Roof lengths in terms of the downstream depth D_{2} for 5,000 second-feet were $0.62 D_{2}, 1.31 D_{2}$, and $2.5 \mathrm{D}_{2}$, respectively. In terms of a 20 -footlong underpass, halving the roof length almost doubled the downstream wave height while doubling the 20 -foot length almost halved the resulting wave height.

The same type of wave suppressor was successfiully used in an installation where it was necessary to obtain optimum wave height reductions, since flow from the underpass discharged directly into a Parshall flume in which it was desired to obtain accurate discharge measurements. The capacity of the structure was 625 cubic feet per second but it was necessary for the underpass to function for low flows as well as for the maximum. With an underpass $3.5 \mathrm{D}_{2}$ long and set. ss showh in Figure 28, the wave reductions were as shown in Table 6.

FIGURE 27

CARTER LAKE DAM NQI • OUTLET WORKS
WAVE HEIGHT RECORDS
(MODEL SCALE 1:16)

Table 6
WAVE HEIGHIS IN FEET--PROTOTYPE
Maximum Head

*Upstream station is at end of stiliing basin. Downstream station is in Parshall flume.
**Recorder pen reached limit of travel in this test only.
Figure 28 shows some of the actual wave traces recorded by an oscillograph. Here it may be seen that the maximm wave height, measured from minimm trough to maximum crest did not occur on successive waves. Thus, the water surface will appear smoother to the eye than is indicated by the maximum wave heights recorded in Table 6.

General design procedure. To design an underpass for a particular structure there are three main considerations: First, how deeply should the roof be submerged; second, how long an underpass should be constructed to accomplish the necessary wave reduction; and third, how much increase in flow depth will occur upstream from the underpass. These considerations are discussed in order.

Based on the two installations shown on Figures 27 and 28, and on other experiments, it has been found that maximum wave reduction occurs when the roof is submerged about 33 percent, i.e., when the under side of the underpass is set 33 percent of the flow depth below the water surface for maximum discharge, Figure 29c. Submergences greater than 33 percent (for the cases tested) produced undesirable turbulence at the underpass outlet resulting in less overall wave reduction. With the usual tail water curve, submergence and the percent reduction in wave height will become less, in general, for smaller than maximum dis. charges. This is illustrated by the upper curve in Figure 29C. The lower curve shows a near constant value for less submergence, but it is felt that this is a somewhat special case since the wave heighta for less than maximum discharge were smaller and of shorter period than in the usual case.

It is known that the wave period greatly affects the performance of a given underpass, with the greatest wave reduction occurring for short period waves. Since the designer usually does not know in advance the wave periods to be expected, this factor should be eliminated from design consideration as far as possible. Fortunately, wave action below a stilling basin usuajly has no measurable period but consists of a mixture of generated and reflected waves best described as a choppy

FIGURE 29

water surface. This fact makes it possible to provide a practical solution from limited data and to eliminate the wave period from consideration except in this general way: waves mast be of the variety ordinarily found downstream from hydraulic jumps or energy dissipators. These usually have a period of not more than about 5 seconds. Longer period waves may require special treatment not covered in this discussion. Fortunately, too, there generally is a tendency for the wave period to become less with decreasing discharge. Since the suppressor provides a greater percentage reduction on shorter period waves, this tends to offset the characteristics of the device to give less wave reduction for reduced submergence at lower discharges. It is therefore advisable in the usual case to submerge the underpass about 33 percent for the maximm discharge. For less submergence, the wave reduction can be estimated from Figure 29C.

The minimum length of underpass required depends on the amount of wave reduction considered necessary. If it is sufficient to obtain a nominal reduction to prevent overtopping of a canal lining at near maximum discharge or to prevent waves from attacking channel banks, a length $1 D_{2}$ to $1.5 D_{2}$ will provide from 60 to 75 percent wave height reduction, provided the initial waves have periods up to about 5 seconds. The shorter the wave period the greater the reduction for a given underpass. For long period waves, little wave reduction may occur because of the possibility of the wave length being nearly as long or longer than the underpass, with the wave passing untouched beneath the underpass.

To obtain greater than 75 percent wave reductions, a longer underpass is inencessary. Under ideal conditions an underpass DD_{2} to $2.5 \mathrm{D}_{2}$ in length may provide up to 88 percent wave reduction for wave periods up to about 5 seconds. Ideal conditions include a velocity beneath the underpass of less than, say, 10 feet per second and a length of channel 3 to 4 times the length of the underpass downstream from the underpass which may be used as a quieting pool to still the small turbulence waves created at the underpass exit.

Wave height reduction up to about 93 percent may be obtained by using an underpass $3.5 \mathrm{D}_{2}$ to $4 \mathrm{D}_{2}$ long. Included in this length is a 4:1 sloping roof extending from the underpass roof elevation to the tail water surface. The sloping portion should not exceed about one-quarter of the total length of underpass. Since slopes greater than 4:1 do not provide the desired draft tube action they should not be used. Slopes flatter than 4:1 provide better draft tube action and are therefore desirable.

Since the greatest wave reduction occurs in the first D_{2} of underpass length, it may appear advantageous to constiruct two short. underpasses rather than one long one. In the one case tested, two underpasses each $1 D_{2}$ long, with a length $5 D_{2}$ between them, gave an added 10 percent wave reduction advantage over one underpass $2 D_{2}$ long. The extra cost of another headwall should be considered, however.

Table 7 summarizes the amount of wave reduction obtainable for various underpass lengths.

Table 7

EFFECT OF UTDERPASS IBWGTH ON WAVE RADUCTION For Underpass Submergence 33 Percent and Yaximun Velocity Beneath $14 \mathrm{ft} / \mathrm{sec}$

Underpess length	Percent wave reduction*	
$1 D_{2}$ to $1.5 D_{2}$	\vdots	60 to 75
$2 D_{2}$ to $2.5 D_{2}$	\vdots	80 to 88
3.5 to $4.0 D_{2}$	\vdots	$* * 90$ to 93

*For wave periods up to 5 seconds. *Noper limit only with draft tube type outlet.

To determine the backwater effect of placing the underyass in the channel, Figure 29B will prove belpful. Data from four aifferent underpasses were used to obtain the two curves shown. Although thie test points from which the curves were drawn showed minor inconsistencies, probably because factors other than those considered also affected the depth of rater upstrean from the underpass, it is belleved that the submitted curves are sufficientiy accurate for design purposes. Figure 29B shows two curves of the discharge coefficient "C" versus average velocity beneath the underpass, one for underpass lengths of $1 D_{2}$ to $2 D_{2}$ and the other for lengths $3 \mathrm{D}_{2}$ to $4 \mathrm{D}_{2}$. Intermediate values may be interpolated although accuracy of this order is not usually required.

Sample problem, Example 4. To illustrate the use of the preceding data in designing an underpass, a sample problem will be helpful.

Assume a rectangular channel 30 feet wide and 14 feet deep flows 10 feet deep at maximum discharge, $2,400 \mathrm{cfs}$. It is estimated that waves will be 5 feet high and of the ordinary variety having a period less than 5 seconds. It is desired to reduce the height of the waves to approximately 1 foot at maximum discharge by installing an underpess-type wave suppressor without increasing the depth of water upstream from the underpass more than 15 inches.

To obtain maximum wave reduction at maximun discharge, the underpass should be submerged 33 percent. Therefore, the depth beneath the underpass is 6.67 feet with a corresponding velocity of $12 \mathrm{ft} / \mathrm{sec}$, $\left(V=\frac{2,400}{30 \times 6.67}\right)$. To reduce the height of the waves from 5 to 1 foot, an 80 percent reduction in wave height is indicated, and, from table 7, requires an underpass approximately $2 D_{2}$ in length.

From Figure 29B, $C=1.07$ for LD_{2} and a velocity of $12 \mathrm{ft} / \mathrm{sec}$.
From the equation given on Figure 29B:
rotal head, $h+h_{V}=\left(\frac{Q}{C A \sqrt{2 g}}\right)^{2}=\left(\frac{2,400}{8.02 \times 1.07 \times 200}\right)^{2}=1.95$ feet
$h+h_{y}$ is the total head required to pass the flow and h represents the backwater effect or increase in depth of water upstream from the underpass. The determination of values for h and h_{ψ} is done by trial and error. As a first determination, assume that $h+h_{\nabla}$ represents the increase in head.

Then, channel approach velocity, $V_{1}=\frac{Q}{A}=$
$\frac{2,400}{(10+1.95) 30}=6.7 \mathrm{ft} / \mathrm{sec}$
$h_{v}=\frac{\left(v_{1}\right)^{2}}{2 g}=\frac{(6.7)^{2}}{64.4}=0.70$ foot
and $h=1.95-0.70=1.25$ feet

To refine the calculation, the above computation is repeated using the new head

$$
\begin{aligned}
& v_{1}=\frac{2,400}{(10+1.25) 30}=7.1 \mathrm{ft} / \mathrm{sec} \\
& b_{v}=0.72 \text { foot }
\end{aligned}
$$

and $h=1.17$ feet
Further refinement is unnecessary.
Thas, the average water surface upstream from the underpass is 1.2 feet higher than the tail water which satisftes the assumed design requirement of a maximum backwater of 15 inches. The length of the underpass is $2 D_{2}$ or 20 feet, and the waves are reduced 80 percent to a maximum height of approximately 1 foot.

If it is desired to reduce the wave heights atill further, a longer underpass is required. Using Table 7 and Figure 29B as in the above problem, an undexpass 3.5 to $4.0 D_{2}$ or 35 to 40 feet in length reduces the waves 90 to 93 percent, making the downstream waves approximately 0.5 foot high and creating a backwater, h, of 1.61 feet.

In using the above heads, allowance should be made for waves and surges which, in effect, are above the computed water surface. onehalf the wave height or more, measured from crest to trough, should be allowed above the computed surface. Full wave height would provide a more conservative design for the usual short period waves encountered in flow channels.

The headwall of the underpass should be extended to this same height and a seawall overhang placed at the top to turn wave spray back into the basin. An alternate method would be to place a cover, say CD_{2} long, upstream from the underpass headwall.

To insure obtaining the maximam wave reduction for a given length of underpass, \& $4: 1$ sloping roof should be provided at the downstream end of the underpass, as indicated on Figure 28. This slope may be conside:cit as part of the overall length. The sloping roof will help reduce the maximum wave height and will also reduce the frequency with which it occurs, providing in all respects a better appearing water surface,

A close inspection of the submitted data will reveal that slightly better results were obtained in the tests than are claimed in the example. This was done to illustrate the degree of conservatism required, since it should be understood that the problen of wave reduction can be very complex if unsual conditions prevail.

The data and sample problem given here are for conditions Within the limits descrihed. From these data it should be possible to design a wave suppressor for general use with a good degree of accuracy. Care should be taken, however, that the data are not extended beyond the limits given. When any doubt exists, a model stady should be made, particularly if the wave reduction must be accomplished because of a measuring device located immediately downstream from the suppressor. Additional model tests will be required to be certain that the limited amount of data, from which these conclusions were drawn, represent typicel problems encountered in the design of field structures.

SECTION 5

SIIIITIG BASIN WITH SLOPIMG APRON (BASIII V)

IMIRODUCITON

Much has been argued, pro and con, concerning the advantages and disadvantages of stilling basins with sloping aprons. The discussion continued indefinitely simply because there was not sufficient supporting data available from which to draw conclusions. It was decided in this study, therefore, to investigate the sloping apron basin sufficiently to answer the many debatable questions and also to provide more definite design data.

Four flumes, A, B, D, and F, Figures 1, 2, and 3, were used to obtain the range of Froude mubers desired for the tests. In the case of Flumes A, B, and D, floors were installed to the slope desired, while Flume F could be tilted to obtain slopes from 0° to 12°. The slope, as referred to in this discussion, is the tangent of the angle between the floor and the horizontal, and will be designated as "中." Five principal measurements were made in these tests, namely: the discharge, the average depth of flow entering the jump, the length of the jump, the tail water depth, and the slope of the apron. The tail water was adjusted so that the front of the jump formed either at the intersection of the spillway face and the sloping apron or, in the case of the tilting flume, at a selected point.

The jump that occurs on the sloping apron takes many forms depending on the slope and arrangement of the apron, the value of the Froude number, and the concentration of flow or discharge per foot of width; but from all appearances, the dissipation is as effective as occurs in the true hydraulic jump on a horizontal apron.

PREVIOUS EXPERDMEHTAL WORK

Previous experimental work on the sloping apron bas been carried on by several experimenters. In 1934, the late C. L. Yarnell of the United States Department of Agriculture surervised a series of experiments on the hydraulic jump on sloping aprons. Carl Kindsvater 5 later compiled these data and presented a rather complete picture, both experimentally and theoreticaliy, for one slope, namely: $1: 6$ ($\tan \phi=$ 0.167). G. H. Hickox 5 presented data for a series of experimerits on a slope of $1: 3$ (tan $\phi=0.333$). Bakhmeteffl and Matzice 6 performed experiments on slopes of 0 to 0.07 in a flume 6 inches wide.

From an academic standpoint, the jump may occur in several ways on a sloping apron, as outlined by Kindsvater, presenting separate and distinct problems, Figure 30. Case A is a jump on a horizontal apron. In Case B, the toe of the jump forms on the slope, while the end occurs over the horizontal apron. In Case C, the toe of the jump is on the slope, and the end is at the junction of the slope and the horizontal apron; while in Case D, the entire jump forms on the slope. With so many possibilities, it is easily understood why experimental data have been lacking on the sloping apron. Messrs. Yarnell, Kindsvater, Bakhmeteff, and Matzke limited their experiments to Case D. B. D. Rindlaub7 of the University of California concentrated on the solution of Case B, but his experimental results are complete for only one slope, that of 12.33° $(\tan \phi=0.217)$.

SLOPING APRON ITESTS

From a practical standpoint, the scope of the present test program need not be so broad as outlined in Figure 30. For example, the action in Cases C and D is for all practical purposes the same, if it is assumed that a horizontal floor begins at the end of the jump for Case D. The first of the current experiments to be described in this chapter involves Case D. However, sufficient tests were made on Case C to verify the above statement that Cases C and D can be considered as one. The second set. of tests will deal with Case B. Case B is virtually Case A operating with excessive tail water deptr. As the tail water depth is further increased, Case B approaches Case C. The results of Case A have already been discussed in the preceding chapters, and Cases D and B will be considered here in order.

Tail Water Depth (Case D)

Data obtained from the four flumes used in the sloping apron tests (Case D experiments) are tabulated in Table 8. The headings are very much the same as those in previous tables, but will need some explanation. Column 2 lists the tangents of the angles of the slopes tested. The depth of flow entering the jump, D_{1}, Column 8, was measured at the beginning of the jump in each case, corresponding to Section 1 , Figure 30. It represents the average of a generous muber of point gage measurements. The velocity at this same point, V_{1}, Column 7, was computed by dividing the unit discharge, q (Column 5), by D_{1}. The length of jump, Column 11, was measured in the flume, bearing in mind that the object of the test was to obtain practical data for stilling basin design. The end of the jump was chosen as the point where the high velocity jet began to lift from the floor, or a point on the level tail water surface immediately downstream from the surface roller, whichever

HYDRAULIC JUMP STUDIES
STILLING BASIN
SLOPING APRONS

Case D, Basin V

437

occurred farthest downstream. " The length of the jump, as tabulated in Column 11, is the horizontal distance from Sections 1 to 2, Figure 30. The tail water depth, tabulated in Column 6, is the depth measured at the end of the jump, corresponding to the depth at Section 2 on Figure 30.

The ratio $\frac{T W}{D_{1}}$ (Column 9, Table 8) is plotted with respect to the Froude number (Column 10) for sloping aprons having tangents 0.05 to 0.30 on Figure 31. The plot for the horizontal apron ($\tan \phi=0$) is the same as shown in Figure 5. Superimposed on Figure 31 are data from Kindsvater, 5 Hickox, 5 Bahkmeteff, 1 and Matzke. 6 The agreement is within experimental error.

The small chart on Figure 31 was constructed using data from the larger chart, and shows, for a range of apron slopes, the ratio of tail water depth for a contimuous sloping apron, to conjugate depth for a horizontal apron. As indicated on the smali sketch in Figure $31, \mathrm{D}_{2}$ and TW are identical for a horizontal apron. The conjugate depth, D_{2} listed in Column 14, Table 6, is the depth necessary for a jump to form on an imaginary horizontal floor beginning at Section 1, Figure 31.

The small chart, therefore, shows the extra depth, required for a jump of a given Froude number to form on a sloping apron, rather than on a horizontal apron. For example, if the tangent of the slope is 0.10 , a tail water depth equal to 1.4 times the conjugate depth (D_{2} for a horizontal apron) will occur at the end of the jump; while if the slope is 0.30 , the tail water depth at the end of the jump will be 2.8 times the conjugate depth D_{2}. The conjugate depth D_{2} used in connection with a sloping apron is merely a convenient reference figure which has no other meaning. It will be used throughout this discussion on sloping aprons.

Length of Jump (Case D)
The length of jump for the Case D experiments has been presented in two ways. First, the ratio length of jump to tail water depth, Column 12, was plotted with respect to the Froude number on Figure 32 for sloping aprons having tangents from 0 to 0.25 . Secondiy, the ratio of length of jump to the conjugate tail water depth, Column 16; Table 8, has been plotted with respect to the Froude number for the same range of slopes on Figure 33. Although not evident on Figure 32, it can be seen from Figure 33 that the length of jump on a sloping apron is longer than that which occurs on a horizontal floor. For example, for a Froude number of 8 , the ratio $\frac{L}{D_{2}}$ varies from 6.1, for a horizontal apron, to 7.0, for an apron with a slope of 0.25. Length determinations from Kindsvater 5 for a slope of 0.167 are aiso plotted on Figure 32. The points show a wide spread.
hydraulic jump studies STILLING BASINY (CASE D)
HYDRAULIC JUMP ON SLOPING APRON RATIO OF TAILWATER DEPTH TO D_{1}

FIGURE 32

HYDRAULIC JUMP STUDIES
STILLING'BASINV (CASE D)
LENGTH OF JUMP IN TERMS OF CONJUGATE DEPTH, DR

Expression for Jump on Sloping Apron (Case D)
Several mathematicians and experimenters have developed expressions for the hydraulic jump on sloping aprons, 25613 so there is no need to repeat any of these derivations here. An expression presented by Kindsvater'5 is the more common and periaps the more practical to use.

$$
\begin{equation*}
\frac{D_{2}}{D_{1}}=\frac{1}{2 \cos \phi} \sqrt{\frac{8 F_{1}^{2} \cos ^{3} \phi}{1+2 K \tan \phi}+1}-1 \tag{5}
\end{equation*}
$$

All symbols have been referred to previously, except for the coefficient K, a dimensionless parameter called the shape factor, which varies with the Froude number and the slope of the apron. Kindsvater and Hickox evaluated this coefficient from the profile of the jump and the measured floor pressures. Surface profiles and pressures were not measured in the current tests but, as a matter of interest, K was comguted from Expression 5 by substituting experimental values and solving for K. The resulting values of K are iisted in Column 17 of Table 8 , and are shown plotted with respect to the Froude number for the various siopes on Figure 34A. Superimposed on Pigure 34A are data from Kindsvater for a slope of 0.167 , and data from Hickox on a slope of 0.333 . The agreement is not particularly striking nor do the points plot well, but it should be remembered that the value K is dependent on the method used for determining the length of jump. The current experiments indicate that the Froude number has littie effect on the value of K . Assuming this to be the case, values of individual points for each slope were averaged and K is shown plotted with respect to tan ϕ on Figure 34B. This phase is incidental to the study at hand and has been discussed only as a matter of record.

Jump Characteristics (Case B)
Case B is the one usually encountered in sloping apron design where the jump forms both on the slope and over the horizontal portion of the apron (Figure 30B). Although this form of jump may appear quite complicated, it can be readily analyzed when approached from a practical standpoint. The primary concern in sloping apron design is the tail water depth required to move the front of the jump up the slope to Section 1, Figure 30B. There is little to be gained with a sloping spron unless the entire length of the sloping portion is utilized.

Referring to the sketches on Figure 35A, it can be observed that for a tail water equal to the conjugate depth, D_{2}, the front of the jump will occur at a point 0 , a short distance up the slope. This distance is noted as I_{0} and varies with the degree of slope. If the tail water depth is increased a vertical increment, ΔY_{1}, it would be reasonable to assume that the front of the jump would raise a corresponding increment. This is not true, the jump profile undergoes an

STILLIEC BASINS h: Sil SLOPIMO APRORS

frictional resistance on the slope. The velocity, V_{1}, and the Froude number were computed at the same location. The tests were made for slopes with tangents varying from 0.05 to 0.30 , and in some cases, several lengths of floor were used for each slope, as indicated in Colum 15 of Table 9.

The resulting lengths and tail water depths, divided by the conjugate depth, are shown in Columns 13 and 14 of Table 9, and these values have been plotted on Figure 36. The horizontal length has been used rather than the vertical distance, ΔY, as the former dimension is more convenient for use. Figure 36 shows that the straight lines for the geometric portion of the graph tend to intersect at a common point, $\frac{1}{D_{2}}=1$ and $\frac{T W}{D_{2}}=0.92$, indicated by the circle on the graph. The change in the profile of the jump as it moves from a horizontal floor to the slope is evidenced oy the curved portion of the lines.

Case C, Figure 30, is the upper extreme of Case B; and as there is practically no difference in the performance for Cases D and C, data for Case D (Table 8) can again be utilized. By assuming that a horizontal floor begins at the end of the jump in Case D, Colums 15 and 16 of Table 8 can be plotted on Figure 36. In addition, data from experiments by D. D. Rindiaub of the University of California, for a slope of 0.217, have been plotted on Figure 36. The agreement of the information from the three sources is very satisfactory.

Length of Jump (Case B)
It is suggested that the length of jump for Case B be obtained from Figure 33. Actually, Figure 33 is for contimous sloping aprons, but these lengths can be applied to case B with but negligible error. In some cases the length of jump is not of particular concern because it may not be economically possible to design the basin to confine the entire jump. This is especially true when sloping aprons are used in conjunction with medium or high overfall spillways where the rock in the riverbed is in fairly good condition. When sloping aprons are designed shorter than the lengith indicated on Figure 33, the rock in the river downstream must act as part of the stilling basin. On the other hand, when the quality of foundation material is questionable, it is advisable to make the apron sufficiently long to confine the entire jump, Figure 33.

FIGURE 36

HYORAULIC JUMP STUDIES
STILLING BASIN V (CASE B)

Existing Structures

To determine the practical value of the methods given for the design of sloping aprons, existing basins employing sloping aprons were, in effect, redesigned using the current experimental information. Pertinent data for 13 existing spillways are tabulated in Table 10. The slope of the spillway face is listed in Column 3; the tangent of the sloping stilling basin apron is listed in Column 4; the elevation of the upstream end of the apron, or front of the jump, is listed in Column 7; the elevation of the end of the apron is listed in Column 8; the fall from headwater to upstream end of apron is tabulated in Column 9; and the total discharge is shown in Column 11. Where outlets discharge into the spillway stilling basin, that discharge has also been included in the total. The length of the sloping portion of the apron is given in Column 14; the length of the horizontal portion of the apron is given in Column 15; and the overall length is given in Column 16. Columns 17 through 27 are computations similar to those performed in the previous table.

The lower portions of the curves of Figure 36 have been reproduced to a larger scale on Figure 37. The coordinates from Columns 26 and 27 of Table 10 have been plotted on Figure 37 for each of the 13 spillways. Cross sections of the basins are shown on Figures 38 and 39. Taking the stilling basins in the order shown on Figure 37, we find that the basin apron is not completely utilized for the maximum discharge condition at the Shasta Dam. This discharge includes both spillway and outlet works. The tail water depth is more than sufficient for the jump to utilize the entire stilling basin apron at Capilano $1: \mathrm{mm}$; and the full apron length is utilized at Friant, Madden, and Norris Dans spiliways. The entire apron lensth will not be utilized for the maximam discharge at Canyon Ferry Dam. In this case the apron was designed for a discharge of $200,000 \mathrm{cfs}$ but the stilling basin will operate at $250,000 \mathrm{cfs}$ without sweeping out. Keswick shows a deficiency in tail water depth for utilization of the entire apron, but this is compensated for, to some extent, by large spreader teeth at the upstream end of the apron. For the preliminary and final basin designs ρ or the Bhakra Dam spillway, both utilize practically the full length of apron. The jump will not occupy the full length of apron for maximum discharge on Olympus, Folsom, or Rihand Dams spillways. The jump will form downstream from the upstream end of the slope. The models of the latter two structures actually showed this to be true. The full length of apron will be utilized by the jump for the stilling basin at Dickinson Dam. This was an earth dam spillway in which appurtenances were used in the basin.
2nble 70

All of the structures listed in Table 10 and shown on Figures 38 and 39 were designed with the aid of riodel studies. The degree of conservatism used in each case was dependent on local conditions and the individual designer.

The total lengths of apron provided for the above 13 existing structures are shown in Colum 16 of Table 10. The length of jump for the maximum discharge condition for each case is tabulated in Column 29 of the same table. The ratio of, total length of apron to length of jump is shown in Colum 30. The total apron length ranges from 39 to 83 percent of the length of jump; or considering the 13 structures collectiveiy, the average total length of apron is 60 percent $\because!$ the length of the jump.

Evaluation of Sloping Aprons

A convincing argument, quoted by the laboratory and others in the past, has been that sloping aprons should be designed so that the jump height curve matches the tall water curve for all discharge conditions. This procedure results in what has been designated a tailor-made basin. Some of the existing basins shown on Figures 38 and 39 were designed in this manner. In light of the current experiments, it was discovered that this course is not the most desirable approach. Instead, matching the jump height curve with the tail water curve should be a secondary consideration, except for the maximum discharge condition.

Thus, the first consideration in design is to determine the apron slope that will involve the minimum amount of excavation, the minimam amount of concrete, n r both, for the maximam discharge and tail water condition. This is the prime consideration. Only then is the jump height checked to determine whether the tail water depth is adequate for the intermediate discharges. It will be found that the tail water depth usually exceeds the required jump height for the intermediate discharges. This may result in a slightly submerged condition for intermediate discharges, but performance will be very acceptable. The extra depth will provide a smoother water surface in and downstream from the basin. Should the tail water depth be insufficient for intermediate flows, it will be necessary to increase the depth by increasing the slope, or reverting to a horizontal besin. It is not necessary for the front of the jump to form at the upstream end of the sloping apron for intermediate discharges provided the tail water depth and the length of basin available for energy dissipation are considered adequate. Using this method, the designer is free to choose the slope he desires, since tests showed that the slope itself had little effect on the performance of the stilling basin action.

It is not possible to standardize on sloping apron design nearly as much as for the horizontel aprons, as mach more individual judgment is required. The slope and overall shape of the apron mast be determined from economic reasoning, while the length must be judged by the type and soundness of the riverbed downstream. The existing structures shown on Figures 38 and 39 should serve as a guide in proportioning future sloping apron designs.

Sloping Apron Versus Horizontal Apron

A point, which it is felt has been misunderstood in the past with regard to horizontal aprons for high dams, can now be clarified. The Bureau has constructed very few stilling basins with horizontal aprons for its larger dams. It has been the consensus that the hydrau:lic jump on a horizontal apron is very sensitive to slight changes in tail water depth. This is very true for the larger values of the Froude number, but this characteristic can be remedied. Suppose a horizontal apron is designed for a Froude number of 10. The besin will operate satisfactorily for conjugate tail water depth, but as the tail water is lowered to $0.98 \mathrm{D}_{2}$ the front of the jump will begin to move. By the time the tail water is dropped to $0.96 \mathrm{D}_{2}$, the jump will probably be completely out of the basin. Thus, to design a stilling basin in this mage the tail water depth must be known with certainty or a factor of saiety should be provided in the design. To guard against a deficiency in tail water depth, the same procedure is suggestei here as for Basins I and II. Referring to the minimum tail water curve for Basins I and II on Figure 11, the margin of eafety can be observed for any value of the Froude mumber. It is recosnimended that the tail water depth for maximum discharge be at least 5 percent larger than the minimum shown on Figure 11. For values of the Froude number greater than 9, a 10 percent factor of safety may be advisable as this will not only stabilize the jump but will improve the performance. With the additional tail water depth, the horizontal apron will perform on a par with the sloping apron. Thus, the primary consideration in design need not be hydraulic but structural. The basin, with either horizontal or sloping apron, which can be constructed at the least cost is the most desirable.

Effect of Slope of Chute

A factor which occasionally affects stilling basin operation is the slope of chate entering the basin. The foregoing experimentation was sufficiently extensive to shed some light on this factor. The tests showed that the slope of chute upstream from the stilling basin was unimportant, as far as jump performance was concerned, so long as the velocity distribution in the jet entering the jump was reasonably uniform. In the case of steep chutes or short flat chutes, the velocity distribution can be considered normal. The principal difficulty is experienced with long flat chutes where frictional resistance on bottom and side walls is sufficient to produce a center velocity greatiy
exceeding that on the bottom or sides. When this happens, greater activity results in the center of the stilling basin than on the sides producing an asymmetrical Jump with strong side eddies. This same effect is also witnessed when the angle of aivergence of a chute is too great for the water to follow properly. In either case the surface of the fump is unusually rough and choppy and the position of the front of the jump is not always predictable.

In the case of earth dam spillways the practice has been to make the upstream portion unusually flat, then steepen the slope to $2: 1$, or that corresponding to the natural trajectory of the jet, immediately preceding the stilling basin. Figure lA, which shows the model spillway for Trenton Dam, illustrates this practice. . Bringing an asymmetrical jet into the stilling basin at a steep angle usualiy does aid in stabilizing the jump. This is not effective, however, where very long ilat slopes are involved and the velocity distribution is completely out of balance.

The most adverse condition has been observed where long canal chates terminate in stilling basins. A typical example is the chute and basin at Station $25+19$ on the South Canal, Uncompahgre Project, Colorado, Figure 40. The operation of this stilling basin is not particularly objectionable, but it will serve as an illustration. The above chute is approximately 700 feet long with a slope of 0.0392 . The stilling basin at the end is also shown on Figure 40. A photograph of the prototype basin operating at normal capacity is shown on Figure 41. The action is of the surging type; the jump is umsually rough, with a great amount of splash and spray. Two factors contribute to the rough operation: the unbalanced velocity distribution in the entering jet, and excessive divergence of the chute in the steepest portion.

A definite improvement can be accomplished in future designs where long flat chutes are involved by utilizing the Type III basin described in Section 3. The baffle blocks on the floor tend to alter the asymetrical jet, resulting in an overall improvement in operation. This is the only corrective measure that can be suggested at this time.

Recommendations

The following rules have been devised for the design of sloping aprons as developed from the foregoing experiments:

1. Determine an apron arrangement which will give the greatest economy for the maximum discharge condition. This is the governing factor and the only justification for using a sloping apron.

CHUTE STILLING BASIN ON SOUTH CANAL
UNCOMPAHGRE PROJECT
2. Position the apron so that the front of the jump will form at the upstream end of the slope for the maximum discharge and tail water condition by means of the information on Figure 37. Several trials will usually be required before the slope and location of the apron are compatible with the hydraulic requirement. It may be necessary to raise or lower the apron, or change the original slope entirely.
3. The length of the jump for maximm or partial flows can be obtained from Figure 33. The portion of the Jump to be confined on the stilling basin apron is a decision for the designer. In making this decision, Figures 38 and 39 may be helpful. The average overa'l apron in Figures 38 and 39 averages 60 percent of the length of jump for the maximum discharge condition. The apron may be lengthened or shortened, depending upon the quality of the rock in the riverbed and cther local conditions. If the apron is set on loose material and the downstream channel is in poor condition, it may be advisable to make the total length of apron the same as the length of jump.
4. With the apron designed properly for the maximum discharge condition, the next step is to be certain that the tail water depth and length of basin available for energy dissipation are sufficient for, say, $1 / 4,1 / 2$, and $3 / 4$ capacity. If the tail water depth is sufficient or in excess of the jump height for the intermediate discharges, the design is acceptable. If the tail water depth is deficient, it may then be necessary to try a flatter slope or reposition the sloping portion of the apron. It is not necessary that the front of the jump form at the upstream end of the sloping apron for partial flows. In other words, the front of the jump may remain at Section 1 (Figure 30B), move upstream from Section 1, or move down the slope for partial flows, providing the tail water depth and length of the apron are considered sufficient for these flow.
5. A horizontal apron will perform on a par with the sloping apron, for high values of the Froude number, if the proper tail water depth is provided.
6. The slope of the chute upstream from a stiling basin has little effect on the hydraulic jump so long as the velocity distribution and depth of flow are reasonably uniform on entering the jump.
7. A small solid triangular sill, placed at the end of the apron, is the only appurtenance needed in conjunction with the sioping apron. It serves to lift the flow as it leaves the apron and thus acts to control scour. Its dimensions are not critical; the most effective height is between $0.05 \mathrm{D}_{2}$ and $0.10 \mathrm{D}_{2}$ and a slope of $3: 1$ to 2:1 (see Figures 38 and 39).

A spiliway should be operated to produce as nearly symmetrical flow in the stilling basin as possible. (This applies to all stiling basins.) Asymmetry produces large horizontal eddies that can caryy xiverbed material onto the apron. This material, motivated by the energy in the eddies, can abrade the apron and appurtemances in the basin at a very surprising rate. These eddies can also undermine wing walls and settle riprap. Asymmetrical operation is expensive operation, and operators should be contimually reminded of this fact.

Where the discharge over high spiliways exceeds 500 cfs per foot of apron width, or where there is any form of asymmetry involved, a model study is advisable. For the higher values of the Froude mumer, stilling basins become increasingly expensive, and the performanice leas acceptable. Thas, where practical, a bucket type of diesipator fay eeive the parpose better and more economically then a stililing basin.

SECHION 6
STILLTIGG BASIN FOR PIPE OR OPEN CEANNEL OUTLEIS
HO TAIL WAITER REQUIRED

(BASIN VI)

Abstract

SUMMARY The stilling basin developed in these tests is an impact-type energy dissipator, contained in a relatively small boxilike structure, which requires no tail water for successful performance. Although the emphasis in this discussion is placed on use with pipe outlets, the entrance structure may be modified to use an open channel entrance.

Generalized design rules and procedures are presented to allow determining the proper basin size and all critical dimensions for a range of discharges up to 339 feet per second and velocities up to 30 feet per second.* Greater discharges may be handled by constructing multiple units side by side. The efficiency of the basin in accomplishing energy losses is greater than a hydraulic jump of the same Froude number.

INITRODUCTION

The development of this short impact-type basin was initiated by the need for some 50 or more stilling structures on the Franklin Canal, Bostwick Division, Missouri River Besin Project. The need was for relatively small basins providing energy dissipation independent of a tail water curve or tail water of any kind. The demand for intormation on general design procedures for use on other projects prompted the laboratory to include further investigation of this basin in the laboratory's general research program. Continued research on this type of basin will be made as time and funds permit.
*The laboratory has developed two basins for specific installations where velocities were considerably higher. One basin was for 10 second-feet at 80 feet.per second, the other for 4 second-feet at 106 feet per second (see Bibliography, No. 33). Sufficient data are not available, however, to provide general design rules or procedures.

Hyaraulic Models

Hydraulic models were used to develop the stilling basin, determine the discharge limitations, and obtain dimensions for the various parts of the basin. Basins 1.6 to 2.0 feet wide were used in the tests. The inlet pipe was $6-3 / 8$ inches, inside diameter, and was equipped with a slide gate well upstream from the basin entrance so that the desirea relations between head, depth, and velocity could be obtainei The pipe was transparent so that backwater effecta in the pipe could be studied. Discharges of over 3 cubic feet per second and velocities up to 15 feet per second could be obtained during the tests. Eydraulic model-prototype relations were used to scale up the results to predict performance for discharges up to 339 second-feet and velocities up to 30 feet per second.

The basin was tested in a tail box containing gravel formed into a trapezoidal channel. The size of the gravel was changed several times during the tests. The outlet channel bottom was slightly wider than the basin and had $1: 1$ side slopes. A tail gate was provided at the downstream end to evaluate the effects of tail water.

Development of Basin

The finally evolved basin was the result of extensive tests on many different arrangements. A detailed discussion of these tests is not given since they had little if any bearing on the final design except in a general way. This is discussed below.

With the many combinations of discharge, velocity, and depth possible for the incoming flow, it became apparent during the early tests that some device was needed at the stilling basin entrance to convert the many possible flow patterns into a common pattern. The vertical hanging baffle proved to be this device, Figure 42. Regariless of the depth or velocity of the incoming flow (within the prescribed limits) the flow after striking the baffle acted the same as any other combination of depth and velocity. Thus, some of the variables were eliminated from the problem.

The effect of velocity alone was then investigated, and it was found that for velocities 30 feet per second and below (for a 42-inch pipe) the performance of the structure was primarily dependent on the discharge. Actually, the velocity of the incoming flow does affect the performance of the basin, but from a practical point of view it could be eliminated from consideration. Had this not been done, considerably more testing would have been required to evaluate and express the effect of velocity.

For velocities of 30 feet per second or less the besin width W was found to be a function of the discharge, with other basin dimensions being related to the width, Figure 42. To determine the necessary width, erosion test results, judgment, and operating experiences were all used and the adrice of laboratory and design personnel was used to obtain the finally determined limits. Since no definite line of demarcation between a "too wide" or "too narrow" basin exists, it was necessary to work between two more definite lines, shown on Figure 42 as the upper and lower limits. These lines required far less judgment to determine than a single intermediate line.

Various basin sizes, discharges, and velocities were tested taking note of the erosion, wave heights, energy losses, and general performance. When the upper and lower limit lines had been established a line about midway between the two was used to establish the proper width of basin for various discharges. The exact line is not shown because strict adherence to a single curve would result in difificult to use fractional dimensions. Accuracy of this degree is not justifiable. Figure 43 shows typical performance of the recamended stilling basin for the three limits discussed. It is evident that the center photograph represents a compromise between the upper limit operation which is very mild and the lower limit operation which is approaching the unsafe range.

Using the middle range of basin widths, other basin dimensions were determined, modified, and made minimum by means of trial and error tests on the several models. Dimensions for nine different basins are. shown in Table 11. These should not be arbitrarily reduced since in the interests of economy the dimensions have been reduced as far as is safely possible.

Performance of Basin

Energy diseipation is initiated by flow striking the vertical hanging baffle and being turned upstream by the horizontal portion of the baffle and by the floor, in vertical eddies. The structure, therefore, requires no tail water for energy dissipation as is necessaxy for a hydraulic jump basin. Tail water as high as $d+\frac{g}{2}$, Figure 42, however, will improve the performance by reducing outlet velocities, providing a smooth water surface, and reducing tendencies toward erosion. Excessive tail water, on the other hand, will cause some flow to pass over the top of the baffle. This should be avoided if possible.

The effectiveness of the basin is best illustrated by comparing the energy losses within the structure to those which occur in a hydraulic jump. Based on depth and velocity measurements made in the approach pipe and in the downstream channel (no tail water), the change in momentum was computed as explained in Section 1 for the hydraulic jump.
Table II
STIILITHG BASIN DIMBITSIONS
Impact-type Energy Dissipator

Sug pip	gested e size*	Maximum discharge	Feet and Inches										Inches				
$\begin{aligned} & \text { Dia } \\ & \text { in. } \\ & \text { (1) } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { (sq ft) } \\ (2) \end{gathered}$	$\begin{gathered} \text { Q } \\ \text { (3) } \end{gathered}$	$\begin{gathered} W \\ (4) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (5) \end{gathered}$	$\begin{gathered} L \\ (6) \end{gathered}$	$\begin{gathered} \mathbf{a} \\ (7) \end{gathered}$	$\begin{gathered} \mathrm{b} \\ (8) \end{gathered}$	$\begin{gathered} \mathbf{c} \\ (9) \end{gathered}$	$\begin{gathered} d \\ (10) \end{gathered}$	(i2)	$\stackrel{f}{\mathbf{f}}$	$\begin{gathered} \text { g } \\ (13) \end{gathered}$	$\begin{gathered} t_{w} \\ (14) \end{gathered}$	$\begin{gathered} t_{\mathbf{f}} \\ (15) \end{gathered}$	$\begin{gathered} t_{b} \\ (16) \end{gathered}$	$\begin{gathered} t_{p} \\ (17) \end{gathered}$	$\begin{gathered} K \\ (18) \end{gathered}$
18	1.7672	21**	5-6	4-3	7-4	3-3	4-1	$2-4$	0-11	0-6	1-6	2-1	6	6-1/2	6	6	3
24	3.1416	38	6-9	5-3	9-0	3-11	5-1	2-10	1-2	0-6	2-0	2-6	6	6-1/2	6	6	3
30	4.9087	59	8-0	6-3	10-8	4-7	6-1	3-4	1-4	0-8	2-6	3-0	6	6-1/2	7	7	3
36	7.0686	85	9-3	7-3	12-4	5-3	7-1	3-10	1-7	0-8	3-0	3-6	7	7-1/2	8	8	3
42.	9.6211	115	10-6	8-0	14-0	6-0	8-0	4-5	1-9	0-10	3-0	3-11	8	8-1/2	9	8	4
48.	12.5664	151	21-9	9-0	15-8	6-9	8-11	4-11	2-0	0-10	3-0	4-5	9	9-1/2	10	8	4
54	15.9043	191	13-0	9-9	17-4	7-4	10-0	5-5	2-2	1-0	3-0	4-11	10	10-1/2	10	8	4
60	19.6350	236	14-3	10-9	19-0	8-0	11-0	5-11	2-5	1-0	3-0	5-4	11	11-1/2	11	8	6
72	28.2743	339	16-6	12-3	22-0	9-3	12-9	6-11	2-9	1-3	3-0	6-2	12	12-1/2	12	8	6

[^1]

The Froude number of the incoming flow was computed using D_{1}, obtained by converting the flow area in the partly full pipe into an equivalent rectangle as wide as the pipe diameter. Compared to the losses in the hydraulic jump, Figure 44, the impact basin shows greater efficiency in performance. Inasmuch as the basin would have performed just as efficiently had the flow been introduced in a rectangular cross section, the above conclusion is valid.

BASIN DESIGK

Table 11 and the key drawing, Figure 42, may be used to obtain dimensions for the usual structure operating within usual ranges. However, a further understanding of the design limitations may help the designer to modify these dimensions when necessary for special operating conditions.

The basin dimensions, Columns 4 to 13 , are a function of the maximum discharge to be expected, Column 3. Velocity at the stilling basin entrance need not be considered except that it should not exceed about 30 feet per second.

Columns 1 and 2 give the pipe sizes used in designs originating in the Coumissioner's Office, Denver, Colorado. These may be changed as necessaxy, however. These suggested sizes were obtained by assuming the velocity of flow to be 12 feet per second. The pipes shown would then flow full at maximun discharge or they would flow half full at 24 feet per second. The basin operates as well whether a small pipe flowing full or a larger pipe flowing partially full is used. The pipe size may therefore be modified to fit existing cond:tions, but the relation between structure size and discharge should be maintained as given in the table. In fact, a pipe need not be used at all; an open channel having a width less than the basin width will perform equally as well.

The invert of the entrance pipe, or open channel, should be held at the elevation shown on the drawing of Figure 42, in line with the bottom of the baffle and the top of the end sill, regardless of the size of the pipe selected. The entrance pipe may be tilted downard somewhat without affecting performance adversely. A limit of 15° is a suggested maximum although the loss in efficiency at 20° may not cause excessive erosion. For greater slopes use a horizontal or sloping pipe (up to 15°) 2 or more diameters long just upstream from the stilling basin.

Under certain conditions of flow a hydraulic jump may be expected to form in the downstream end of the pipe sealing the exit end. If the upper end of the pipe is also sealed by incoming flow, a vent may be necessary to prevent pressure fluctuation in the system. A vent to the atmosphere, say one-sixth the pipe diameter, should be installed upstrean from the jump.

The notches shown in the baffle are provided to aid in cleaning out the basin after prolonged nomuse of the structure. When the basin has silted level full of sediment before the start of the spill, the notches proyide concentrated jets of water to clean the basin. The basin is designed, however, to carry the full discharge, shown in Table li, over the top of the baffle if for any reason the space beneath the baffle becomes clogged, Figure 45C. Performance is not as good, naturally, but acceptable. With the basin operating normally, the notches provide some concentration of flow passing over the end sill, resulting in some tendency to scour, Figure 45A. Riprap as shown on the drawing will propede ample protection in the usual installation, but if the best possible performance is desired, it is recommended that the aiternate end sill and 45° end walls be used, Figure 45B. The extra sill length reduces flow concentration, scour tendencies, a: id the height of maves in the downstream channel.

CORCIUSIONS AND RECOMMENDATIONS

The following procedures and rules pertain to the design of Basin VI:

1. Use of Basin VI is limited to cases where the velocity at the entrance to the stilling basin is about 30 feet per second or less.
2. From the maximum expected discharge, determine the stilling basin dimensions, using Table 11, Columns 3 to 13. The use of maltiple units side by side may prove economical in some cases.
3. Compute the necessary pipe area from the velocity and discharge. The values in Table 11 , Columns 1 and 2, are suggested sizes based on a velocity of 12 feet per second and the desire that the pipe run full at the discharge given in Colum 3. Regardless of the pipe size chosen, maintain the relation between discharge and basin size given in the table. An open channel entrance may be used in place of a pipe. The approach channel should be narrower than the basin with invert elevation the same as the pipe.
4. Although tail water is not necessary for successful operation, a moderate depth of tail water will improve the performance. For best performance set the basin so that maximum tail water does not exceed d $+\frac{8}{2}$, Figure 42.
5. The thickness of various parts of the basin as used in the Commissioner's Office, Denver, Colorado, is given in Columns 14 to 18, Table 11.

Channel Erosion and Emergency Operation for Maximum Tabular Discharge No Tallwater
Impact Type Energy Dissipator - Basin VI
6. The entrance pipe or channel may be tilted downard about 15° without affecting performance adversely. For greater slopes use a horizontal or sloping pipe (up to 15°) 2 or more diameters long just upstream from the stilling basin. ligintain proper elevation of invert at entrauce as shown on the drawing.
7. If a hydraulic jump is expected to form in the downstream end of the pipe and the pipe entrance is sealed by incoming flow, install a vent about one-sixth the pipe diameter at any convenient location upstream from the Jump.
8. For best possible operation of basin use alternate end sill and 45° wall design shown on Figure 42. Erosion tendencies will be reduced as shown on Figure 45.

BIBLIOGRAPEY

1. Bakhmeteff, B. A. and Matzke, A. E., "The Hydraulic Jump in Terms of Dyaamic Siminurity," Transactions ASCE, Vol. 101, p. 630, 1936
2. Puls, L. G., "Mechanics of the Hydraulic Jump," Bureeu of Reclamation Technical Memorandum No. 623, Denver, Colorado, October 1941
3. Dr. Ing. Kurt Safranez, "Untersuchangen uber den Wechselsprung" (Research Relating to the Kydraulic Jump), Bausinginieur, 1929, Heft. 37, 38. Translstion by D. P. Barnes, Bureau of Reclamation files, Denver, Colorado. Also Civil Engineer, Vol. 4, p. 262, 1934
4. Woycicki, K., "The Hydraulic Jump and its Top Roll and the Discharge of Sluice Gates," a translation from German by I. B. Hosig, Bureau of Reclamation Technical Memorandum No. 435, Denver, Colorado, January 1934
5. Kinsvater, Carl E., "The Hydraulic Jump in Sloping Channels," Transactions ASCE, Vol. 109, p. 1107, 1944
6. Bakhmeteff, B. A. and Matzke, A. E., MThe Hydraulic Jump in sloped Channels," Transactions ASMI, Vol. 60, p. 111, 1938
7. Rindlaub, B. D., "The Hydraulic Jump in Sloping Channels," Thesis for Master of Science degree in Civil Engineering, University of California, Berkeley, California
8. Blaisdell, F.W., "The SAF Stilling Basin," United States Department of Agriculture, Soil Conservation Service, St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minnesota, December 1943
9. Bakhmeteff, B. A., "The Hydraulic Jump and Related Phenomena," Transactions ASME, Vol. 54, 1932, Paper APM-54-1
10. Chertonosov, M. D. (Some Considerations Regariing the Length of the Hydraulic Jump), Transactions Scientific Research Institute of Hydrotechnics, Vol. 17, 1935, Leningrad. Translation from Russian in files of University of Minnesota
11. Einwachter, J., Wossersprung and Deckwalzenlange (The Hydraulic Jump and Length of the Surface Roller) Wassericraft und Wasserwirtschaft, Vol. 30, April 17, 1935
12. Ellms, R. W., Computation of Tail-water Depth of the Hydraulic Jump in Sloping Flumes," Transactions ASME, Vol. 50, Paper Hyd. 50-5, 1928
13. Ellms, R. W., "Hydraulic Jump in Sloping and Horizontal Flumes," Transactions ASME, Vol. 54, Paper Hyd. 54-6, 1932
14. Hinds, Julian, "The Hydraulic Jump and Critical Depth in the Design of Hydraulic Structures," Engineering News-Record, Vol. 85, No. 22, D. 1034, November 25, 1920.
15. King, H. W., "Handbook of Hydraulics," McGraw-Hill Book Company, Second Edition, p. 334, 1929
16. Blaisdell, F. W., "Development and Hydraulic Design, Saint Anthony Falls Stilling Besin," Transactions ASCE, Vol. 113, p. 483, 1948
17. Lancaster, D. M., "Field Measurements to Evaluate the Characteristics of Flow Down a Spillway Face with Special Reference to Grand Coulee and Shasta Dams," Bureau of Reclamation Hydraulic Laboratory Report Hyd. 368
18. Rouse, Hunter, Engineering Hydraulics, John Wiley \& Sons, 1950, p. 571
19. Newman, J. B. and LaBoon, F. A., "Effect of Baffle Piers on the Hydraulic Jump," Master of Science Thesis, Massachusetts Institute of Technology, 1953
20. Higgins, D. J., The Direct Measure of Forces on Baffle Piers in the Hydraulic Jump," Master of Science Thesis, Massachusetts Institute of Technology, 1953
21. Forchhemier, Ueber den Wechselsprung, The Hydraulic Jump, Die Wasserkraft, Vol. 20, 1925, p. 238
22. Kennison, K. R., "The Hydraulic Jump in Open Channel Flow," Transactions ASCE, 1916
23. Kozeny, J., Der Wassersprung, The Hydraulic Jump, Die Wasserwirtschaft, Vol. 22, 1929, p. 537
24. Rehbock, T., Die Wasserwalze als Regler des Energie - Haushiltes der Wasserlaufe, The Hydraulic Roller as a Regulator of the Energy Content of a Stream, Proceedings ist International Congress for Applied Mechanics, Delft, 1924
25. Schoklitsch, A., Wasserkraft und Wasseiwirtschaft, Vol. 21, 1926, p. 108
26. Woodward, S. M., "Hydraulic Jump and Backwater Curve, Engineering News-Record, Vol. 8, 1918, p. 574, Vol. 86, 1921, p. 185
27. Moore, W. L., "Energy Loss at the Base of a Free Overfall," Transactions ASCE, Vol. 109, 1943, p. 1343
28. "Hydraulic Model Studies, Fontana Project," Technical Monograph 68, Tennessee Valley Authority, p. 99
29. Phone, T. J., "Hydraulic Model Studies on the Wave Suppressor Device at Friant-Kern Canal Headworks," Bureau of Reclamation Hydraulic Laboratory Report Hyd. 395
30. Beichley, G. L., "Hydraulic Model Studies of the Outlet Works at Carter Lake Reseryoir Dam No. I Joining the St. Vrain Canal," Bureau of Reclamation Hydraulic Laboratory Report Hyd. 394
31. Peterica, A. J., "Impact Type Energy Dissipators for Floit at Pipe Outlets, Franklin Canal," Bureau of Reclamation Hydraulic Laboratory Report Hyd. 398
32. Simmons, W. P., "Hydraulic Model Studies of Outlet Works and Wasteway for Lovewell Dam," Bureau of Reclamation Hydraulic Laboratory Report Hyd. 400
33. Schuster, J. C., MModel Studies of Davis Aqueduct Turnouts 15.4 and 11.7, Weber Basin, Utah," Bureau of Reclamation Hydraulic Laboratory Paper No. 62

United States Department of the Interior
BUREAU OF RECLAMATION

[^0]: - *Supersedes Laboratory Report No. Hyd-380; Progress Report, Research Study on Stililing Basins and Bucket Dissipators; dated June 11, 1954. J. H. Bradiley is now Hydraulic Engineer, Bureau of Pub.lic Roads, Washington, D. C.

[^1]: *Suggested pipe will run full when velocity is 12 feet per second or half full when velocity is
 24 feet per second. Size may be modified for other velocities by $Q=$ sy, but relation between Q and basin dimensions shown must be maintained.
 *WFor discharges less than 21 second-feet, obtain basin width fram curve of Figure 42. Other
 dimensions proportional to $W ; H=\frac{3 W}{4}, L=\frac{4 W}{3}, d=\frac{W}{6}$, etc.

