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Appendix L, Shasta Coldwater Pool Management 

Attachment L.3 Winter-run Chinook Salmon 

Juvenile Production Index 

Model 

L.3.1 Model Overview 

Winter run Chinook salmon are unique in that they spawn in the late spring and summer when air 

temperatures are at seasonal highs and flows are at seasonal lows. Historically, this run migrated 

to higher elevation habitats where summer water temperatures were more appropriate for 

spawning and egg incubation. The only extant population is now restricted to spawning in the 

reach just below Keswick Dam. Although conditions below the dam are managed to support this 

run, there is concern that conditions during spawning and incubation may be reducing population 

productivity. To explore hypothesized relationships between juvenile winter run production and 

biological and environmental drivers we developed a model using the United States Fish and 

Wildlife Service (USFWS) winter run Chinook salmon juvenile production index (JPI) as the 

response variable. 

The JPI is a standardized estimate of juvenile winter run passage at Red Bluff Diversion Dam. 

Juvenile Chinook salmon migrate past Red Bluff at various life stages and passage may occur 

days to months following emergence. The USFWS uses an assumed survival rate between the fry 

life stage and all-post fry life stages to standardize the estimate into “fry equivalents”. Potential 

predictor variables included metrics of flow, temperature and spawner abundance that were 

constructed to represent hypothesized relationships with productivity. Modeling was performed 

to identify the most explanatory flow and temperature metrics and then information theoretic 

methods were used to select best-approximating models. 

Multi-model averaging led to the identification of two drivers that most affected juvenile winter 

run production; flow during incubation and emergence, and the number of female spawners. The 

predictive strength of flow is important because previous modeling efforts have focused on the 

effect of temperature on egg-to-fry survival, a calculation that uses the response used here (JPI) 

but with additional estimates and assumptions (Martin et al. 2017, Anderson et al. 2022). Neither 

of the previous studies have examined the effect of flow and have instead assumed non-

temperature environmental effects were equal among all years. 
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L.3.2 Model Development 

L.3.2.1 Methods 

L.3.2.1.1 Data 

Twenty-one years of data were used for this modeling (2002-2022). Data were available for 

1996-1999; however, methods for the carcass survey and the specific population estimators used 

were not standardized until 2002. Juvenile data were not available for 2000 and 2001 due to a 

lack of sampling. 

The response variable for this exercise was the winter run juvenile production index (JPI). The 

JPI is a standardized estimate of juvenile winter run passage at Red Bluff Diversion Dam. 

Juvenile Chinook salmon migrate past Red Bluff at various life stages and passage may occur 

days to months following emergence. The USFWS uses an assumed survival rate between the fry 

life stage and all-post fry life stages to standardize the estimate into “fry equivalents”. 

Independent variables were selected based on hypothesized drivers of variation in production and 

included both physical and biological factors (Table L.3-1). Three temperature variables were 

considered. The first two metrics were calculated at the station located on the Sacramento River 

at Highway 44 (CDEC station “SAC”). This location was selected because it is close to the 

midpoint of the winter run spawning habitat. Data from this station were not available in all 

years. When data were not available, it was interpolated using a linear model and values recorded 

at a station upstream (CDEC station “KWK”) and a station downstream (CDEC station “CCR”). 

The two metrics calculated at this site were selected to represent both acute and chronic effects 

of temperature. The first metric was the average daily temperature between July 1st through 

September 30th. This period is when cold water pool is most likely to be limited and most eggs 

hatch by the end of September. This metric represents potential chronic effects of temperature on 

production across this period. The second metric is the number of degree days over 53°F 

(11.67°C) between May 1st and September 30th. This metric represents acute effects that occur 

once a threshold is exceeded while no effect occurs below that threshold. The value chosen for 

the threshold approximates values proposed as necessary to protect incubating eggs. The final 

temperature metric was the mean temperature at Red Bluff diversion Dam (CDEC station 

“RDB”) during the peak month of juvenile winter run catch (October). 

Four flow variables were considered, including: mean flow at Bend Bridge (CDEC station 

“BND”) during incubation and emergence, mean flow at BND during the month of peak catch at 

Red Bluff, and the coefficient of variation in flow at BND during the month of peak catch at Red 

Bluff. 

The estimated number of female winter-run spawners was also considered as a biological 

explanatory variable. 
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Table L.3-1. Environmental variables considered for modeling variation in JPI with a 

description, period represented and hypothesized relationship to JPI. 

Covariate Name Metrics description Months Hypothesis 

Temp_SAC_I Average temperature during key 

incubation period (Jul-Sep) at 

Hwy 44 (SAC). Indexes average 

temperature experienced by 

incubating eggs 

July-September Temperature effects on survival 

are primarily chronic and increase 

linearly with mean daily values in 

the period when cold water 

volume is limiting. 

CD_above_11.67_I Cumulative degrees per day 

above 11.67C during incubation 

period at Hwy 44 (SAC). Indexes 

magnitude of exposure to 

temperature stress 

July-September Temperature effects on production 

are primarily acute and occur 

when a threshold value is 

exceeded 

Temp_RB_M Mean temp @ Red Bluff during 

month of peak migration. 

Indexes metabolic demand of 

juveniles and their predators 

October Higher temperatures during 

rearing/migration increase 

predation intensity and demand 

for prey 

Flow_IE Mean flow at Bend Bridge 

during incubation and 

emergence. 

May-October Mortality effects of flow occur at 

daily time steps during incubation 

and emergence 

Total_discharge_IE Cumulative discharge at Bend 

Bridge (m3) during incubation 

and emergence 

May-October Mortality effects of flow occur at a 

seasonal time step in response to 

the total volume of water 

discharged during incubation and 

emergence 

Flow_M Mean flow at Bend Bridge 

during month of peak migration 

October Survival during migration is 

directly proportional to flow 

magnitude 

Flow_CV_M CV of flow at Bend Bridge 

during peak month of migration 

October Flow pulses increase survival 

(Hassrick et al. 2022) 

L.3.2.1.2 Modeling and Analysis 

We employed several methods to identify and analyze potential factors associated with observed 

JPI. First, we created exploratory scatter plots to visually assess the relationship between 

potential factors and JPI. Then we examined the correlation of these factors, and noted several 

highly correlated pairs (e.g., Flow_IE and Total_Discharge_IE Pearson's correlation > 0.99, see 

Table L.3-2). 

To refine our list of potential factors, we created a Lasso model to highlight the important 

variables among the potential factors (McNeish 2015). Through regularization, Lasso models 

consider penalization for the number of included parameters within the modeling itself, as 

opposed to post hoc comparisons. Because of this, LASSO models perform well when the 

number of predictors exceeds the sample size or when strong correlations exist among predictors 
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(multicollinearity). Unlike stepwise selection, LASSO models are not running multiple tests, and 

do not need Bonferroni corrections, and are less likely to be overfit due to “data dredging” than a 

stepwise procedure. Similarly, they are not sensitive to variable naming or order since everything 

is considered at once. Finally, LASSO model output contains quantitative measures of variable 

importance that are easy to interpret and extend to other analyses. Overall, LASSO models do a 

good job of highlighting factors most useful for prediction while accounting for correlated 

factors. 

Based on the results of the LASSO model, and potential for managerial control of independent 

variables, we selected a set of a priori models to test. JPI is an integer count that is likely well 

modeled using a count process. Because the JPI data are over-dispersed, with variance 

significantly higher than the mean, we chose to model the process using negative binomial 

regression, with a square root link function that adequately accounts for the over-dispersion 

while still allowing for easy interpretation (as opposed to quasi- methods). 

Models were compared using Bayesian Information Criterion (BIC) scores to determine how 

well models were supported by the data while not being overfit. BIC was selected due to the low 

number of data points and AIC’s propensity for over fitting with small sample sizes. The model 

with the lowest BIC score was designated as the “best fit model” and the BIC value of each 

candidate model was subtracted from the BIC value of the best fit models to calculate the ∆BIC 

value. Models, with ∆BIC values ≤5.0 were considered competing and BIC model weights were 

used to calculate model averaged coefficients and unconditional confidence interval. 

Additionally, leave one out cross validation (LOOCV) was used to estimate R2 as measure of fit 

for individual models. 

Finally, we created a prediction plot to compare the selected model’s predictions to the observed 

JPI values. These plots allow us to assess the accuracy of the model in predicting JPI based on 

the selected variables, and help highlight additional trends in predictions / residuals. All analysis 

was run in R (R Core Team 2023) with Lasso models coming from the glmnet package 

(Friedman et al 2010) 

Table L.3-2. Pearson product-moment correlations between explanatory variables 

considered for use in modeling the winter run Chinook Salmon JPI. 

 

Temp_RB

_M Flow_M 

Flow_CV_

M Flow_IE 

Total_dis

charge_IE 

Temp_SAC

_I 

DD_above

_11.67 

Temp_RB_M 1 blank blank blank blank blank blank 

Flow_M -0.382 1 blank blank blank blank blank 

Flow_CV_M 0.214 0.369 1 blank blank blank blank 

Flow_IE -0.457 0.692 -0.053 1 blank blank blank 

Total_discarge_IE -0.459 0.695 -0.051 >0.99 1 blank blank 

Temp_SAC_I 0.906 -0.378 0.258 -0.626 -0.627 1 blank 

DD_above_11.67_I 0.888 -0.312 0.344 -0.605 -0.606 0.968 1 



 L.3-5 

L.3.2.2 Assumptions / Uncertainty 

The monitoring data analyzed here, and by Martin et al. (2017) and Anderson et al (2022), are 

not collected in a way that specific life stages (egg, fry, parr and smolts) can be separated for 

analysis of life stage-specific effects. Thus, there remains uncertainty as to the specific drivers 

affecting individual life stages that contribute to JPI. Field experiments that can elucidate life 

stage-specific drivers and thresholds are needed to develop a more granular understanding and 

ultimately to improve the effectiveness of management actions intended to improve spawning 

success and juvenile production of winter-run Chinook salmon. 

L.3.2.3 Code and Data Repository 

Code is available at: GitHub - fishsciences/2022-shasta_winter_run_survival-Public 

Analysis files for the WR JPI input data and WR JPI analysis are available upon request. 

L.3.2.4 Model Development Results 

Exploratory plots showcase a strong relationship between JPI and Females, but also strong 

relationships with flow metrics, and weaker relationships coming from the temperature factors 

(Figure L.3-1). 

 

Figure L.3-1. Exploratory scatter plots comparing JPI to potential factors. 

https://github.com/fishsciences/2022-shasta_winter_run_survival-Public
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The Lasso model showed most support for including Females, Flow_IE, and Flow_CV_M. Out 

of the temperature metrics, Temp_SAC_I had the highest support. Seven candidate models were 

constructed using these variables and evaluated for relative fit as described above (Table L.3-3). 

Three of these models had good support in the data according to their ∆ BIC scores (M1, M2, 

M4). These models explained between 78% and 74% of the total variation in JPI (Table L.3-3). 

All three competing models were used to calculate model averaged coefficients and 

unconditional confidence intervals for each variable (Table L.3-4). Coefficients with 

unconditional confidence intervals that did not include zero were considered to have good 

support in the data (Burnham and Anderson 2002). 

Table L.3-3. Model selection results. Delta BIC is calculated using model 4 as baseline 

and R2 values were calculated using leave-one-out cross validation. 

Model 

Number of 

Parameters BIC ΔBIC R2 

1. Flow_IE + Temp_SAC_I + Flow_CV_M + Females 5 657.339 3.014 0.635 

2. Flow_IE + Females 3 654.330 0.004 0.769 

3. Flow_CV_M + Females 3 672.856 18.531 0.186 

4. Flow_IE, Flow-CV-M + Females 4 654.325 0.00 0.639 

5. Temp_SAC_I + Females 3 669.202 14.876 0.613 

6. Temp_SAC_I + Flow_CV_M + Females 4 671.468 17.143 0.325 

7. Flow_IE + Temp_SAC_I + Females 4 657.249 2.924 0.757 

Table L.3-4. Model averaged parameters and unconditional 95% confidence intervals 

calculated using the four top models selected with BIC. 

blank Estimate Lower CI Upper CI 

Intercept -912 -1474 -332 

Females 0.179 0.101 0.265 

Flow_IE 6.656 5.133 7.993 

Flow-CV-M -2730 -4652 323 

Temp_SAC_I -25.443 -88.533 180.422 

Model averaging found that two independent variables were well supported by the data 

(unconditional confidence interval did not include zero). These were the number of female 

spawners and mean flow during the incubation and early emergence period (Table L.3-4). Both 

variables had a direct relationship with JPI. Two variables were not well supported including the 

coefficient of variation in flow during the peak month of passage at Red Bluff and mean water 

temperature at Highway 44 during incubation and emergence. Model averaged coefficients 

predicted JPI values which closely tracked observed JPI across years, with the largest deviation 

occurring in 2009 (Figure L.3-2). 
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Figure L.3-2. Observed JPI values from 2002 to 2022 and predicted values using model 

averaged coefficients. 

L.3.2.5 Model Development Discussion 

Model selection and multi-model averaging identified the number of female spawners and flow 

during incubation and emergence as the two best supported predictors of juvenile winter run 

production. Both variables are well supported in the literature with a long history of research on 

the relationship between spawner abundance and juvenile recruitment (Subbey et al. 2014) and 

the effect of flow on juvenile production (e.g., Munsch et al. 2020). Thus, the importance of 

these variables was not surprising. Within the Sacramento River, previous modeling efforts have 

focused on the effect of temperature on egg-to-fry survival, a calculation that uses the response 

used here (JPI) but with additional estimates and assumptions (Martin et al. 2017, Anderson et al. 

2022). Neither of the previous studies have examined the effect of flow and have instead 

assumed non-temperature effects were equal among all years. This analysis indicates that 

interannual variation in flow has a well-supported effect on juvenile winter-run production 

whereas the effect of temperature was not as well supported. 
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There has been considerable research on how temperature affects the survival of Chinook salmon 

eggs and strong effects have been identified (Beacham and Murray 1989, Geist et al. 2006). 

Thus, it may initially be surprising that temperature was not a strong driver in this analysis. 

However, operations of Shasta Reservoir are designed to help ensure temperatures in the 

spawning and egg incubation reach remain below levels where laboratory studies suggest rapidly 

increasing mortality will occur (USFWS 1999). Modeling by Martin et al. (2017) and Anderson 

et al. (2022), assume that temperature is the only interannual environmental driver of survival. 

The highest temperatures often occur in the lowest flow years. However, the effect of flow has 

not previously been tested, and the conclusion of the Martin et al. (2017) was that the threshold 

temperature must be lower in the field than what has been derived from laboratory studies. 

Martin et al. (2017) acknowledges that an alternative hypothesis to explain their findings is that 

some factor other than temperature is influencing interannual variation. This analysis provides 

strong evidence for this alternative hypothesis with flow enjoying stronger support than water 

temperature. 

The monitoring data analyzed here, and by Martin et al. (2017) and Anderson et al (2022), are 

not collected in a way that specific life stages (egg, fry, parr and smolts) can be separated for 

analysis of life stage-specific effects. Thus, there remains uncertainty as to the specific drivers 

affecting individual life stages that contribute to JPI. Field experiments that can elucidate life 

stage-specific drivers and thresholds are needed to develop a more granular understanding and 

ultimately to improve the effectiveness of management actions intended to improve spawning 

success and juvenile production of winter-run Chinook salmon. 

L.3.3 Model Application 

For this effects analysis, the JPI model was run for years 2002-2022 when data on female 

spawners was available. Temperature data at node (BLW KESWICK) from the HEC-5Q model 

was used to represent the CDEC station SAC (Sacramento River at Highway 44). Flow data from 

Calsim 3 node (C_SAC257) was used to represent CEDC station BND (Sacramento River at 

Bend Bridge). Data from these nodes was summarized the same way as described in Table L.3-1 

above. The output of the model is the predicted JPI for each year. 

L.3.4 Results 

L.3.4.1 BA 

When grouped by water year type, the highest mean predicted JPI value occurred under NAA 

during above normal water years (4,166,909) and the lowest mean predicted JPI value occurred 

during above critical water years (1,084,428) under Alt2 With TUCP Without VA (Figure L.3-3 

and Table L.3-5). 

The highest predicted JPI value across all years occurred in 2005 under Alt2 Without TUCP 

Delta VA (8,901,808). The lowest JPI values occurred in 2014 under Alt2 With TUCP Without 

VA (202,083, Figure L.3-4 and Table L.3-6). 
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Figure L.3-3. Observed JPI values from 2002 to 2022 and predicted values under BA 

scenarios by water year type. 

Table L.3-5. JPI observed and mean predicted values under BA scenarios from 2002 to 

2022 by water year type. 

Water  

Year Type 

Observed 

JPI NAA EXP1 EXP3 

Alt2 

wTUCP 

woVA 

Alt2 

woTUCP 

woVA 

Alt2 

woTUCP 

DeltaVA 

Alt2 

woTUCP 

AIIVA 

Above Normal 6,652,583 4,166,909 938,222 1,767,935 4,064,905 4,064,717 4,080,225 3,927,614 

Below Normal 3,743,451 2,903,175 898,043 1,595,262 2,792,077 2,792,278 2,814,852 2,761,983 

Critical 799,585 1,413,014 221,555 1,326,659 1,084,428 1,250,915 1,215,117 1,163,048 

Dry 3,820,593 1,903,154 211,001 1,055,059 1,750,491 1,751,186 1,788,049 1,675,850 

Wet 4,776,674 2,874,042 1,311,624 1,344,053 2,864,663 2,864,578 2,864,874 2,864,352 
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Figure L.3-4. Observed JPI values from 2002 to 2022 and predicted values under BA 

scenarios.
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Table L.3-6. JPI observed and predicted values under BA scenarios from 2002 to 2021. 

Year 

Water  

Year Type NAA EXP1 EXP3 

Alt2wTUCP 

woVA  

Alt2woTUCP 

woVA  

Alt2woTUCP 

DeltaVA  

Alt2woTUCP 

AllVA  

2002 Below Normal 3,959,028 818,025 2,060,195 3,933,154 3,932,752 4,009,544 3,892,211 

2003 Above Normal 5,284,368 1,608,204 2,573,376 5,272,227 5,271,497 5,290,793 5,116,249 

2004 Above Normal 3,049,451 268,240 962,493 2,857,582 2,857,937 2,869,657 2,738,979 

2005 Below Normal 8,564,866 5,299,183 6,715,426 8,755,564 8,755,512 8,901,808 8,825,628 

2006 Wet 6,559,160 3,658,496 3,453,628 6,558,389 6,558,386 6,558,363 6,558,368 

2007 Below Normal 1,899,415 5,198 479,164 1,775,579 1,776,101 1,735,995 1,700,450 

2008 Dry 1,173,361 3,191 533,031 960,493 960,380 982,025 872,844 

2009 Dry 1,361,517 366,449 888,745 1,262,236 1,261,794 1,263,268 1,215,084 

2010 Below Normal 1,071,971 135,590 412,359 1,035,097 1,035,100 1,035,352 1,000,173 

2011 Wet 1,506,881 203,111 327,792 1,504,149 1,504,147 1,504,190 1,504,206 

2012 Below Normal 2,225,736 23,626 636,031 1,992,567 1,994,803 2,008,791 1,917,065 

2013 Dry 2,935,972 146,488 1,347,491 2,700,273 2,702,173 2,784,318 2,641,898 

2014 Critical 436,339 2,333 490,476 202,083 311,402 301,173 298,193 

2015 Critical 743,471 9 681,739 810,739 802,812 781,320 823,065 

2016 Below Normal 1,069,988 1,720 358,538 854,396 853,181 849,861 835,011 

2017 Wet 665,046 63,850 115,317 656,478 656,325 656,552 655,308 

2018 Below Normal 1,531,224 2,956 505,122 1,198,182 1,198,497 1,162,616 1,163,344 

2019 Wet 2,765,082 1,321,039 1,479,475 2,739,635 2,739,453 2,740,390 2,739,526 

2020 Dry 2,141,768 327,876 1,450,968 2,078,964 2,080,396 2,122,583 1,973,576 

2021 Critical 3,059,232 662,322 2,807,763 2,240,463 2,638,532 2,562,858 2,367,887 
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L.3.4.2 EIS 

 

Under Alt1, the mean predicted JPI is generally higher than NAA, ranging from 45.23% higher 

in 2014 to 8.31% lower in 2003 (Table L.3-7, Figure L.3-5). 

Under Alt2 with TUCP without VA, the mean predicted JPI is generally lower than NAA, 

ranging from 10.95% higher in 2015 to 53.08% lower in 2014.Under Alt2 without TUCP without 

VA, the mean predicted JPI is generally similar to NAA with an even number of years higher and 

lower than NAA, ranging from 272.52.98% higher in 2014 to 85% lower in 2017.Under Alt2 

without TUCP Delta VA, the mean predicted JPI is generally lower than NAA, ranging from 

4.45% higher in 2005 to 29.91% lower in 2014  

Under Alt2 without TUCP Systemwide VA, the mean predicted JPI is generally lower than NAA, 

ranging from 3.60% higher in 2005 to 30.68% lower in 2014. 

Under Alt3, the mean predicted JPI is generally lower than NAA, ranging from 39.30% higher in 

2017 to 45.96% lower in 2018. 

Under Alt4, the mean predicted JPI is generally lower than NAA, ranging from 5.90% higher in 

2020 to 27.68% lower in 2014. 
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Figure L.3-5. Observed JPI values from 2002 to 2022 and predicted values under EIS 

scenarios.



 L.3-14 

Table L.3-7. JPI observed and predicted values under EIS scenarios from 2002 to 2021 

Year NAA Alt1 Alt2wTUCP woVA  

Alt2woTUCP 

woVA  

Alt2woTUCP 

DeltaVA  

Alt2woTUCP 

AllVA  Alt3 Alt4 

2002 

3959027.985 

4086931.7 
(3.23%) 3956028.3 (-0.08%) 2207140 (-44.25%) 4034274 (1.9%) 

3943246.3 (-
0.4%) 

3936133.7 (-
0.58%) 

3912864.1 (-
1.17%) 

2003 

5284368.415 

4845104.2 (-
8.31%) 5303741.7 (0.37%) 

2485514.1 (-
52.96%) 

5290840.9 
(0.12%) 

5122851.9 (-
3.06%) 

4685515.4 (-
11.33%) 

4599483.1 (-
12.96%) 

2004 

3049450.569 

2905758.8 (-
4.71%) 2846128.6 (-6.67%) 

2828438.8 (-
7.25%) 

2873615.1 (-
5.77%) 

2787569.4 (-
8.59%) 

2772694.2 (-
9.08%) 

2562879.5 (-
15.96%) 

2005 

8564865.603 

9604400.7 
(12.14%) 8802211.7 (2.77%) 

5703602.9 (-
33.41%) 

8945918.5 
(4.45%) 

8873627.9 
(3.6%) 

9864235.1 
(15.17%) 

9009385.8 
(5.19%) 

2006 

6559160.304 

6874386.7 
(4.81%) 6558430.5 (-0.01%) 

5145443.3 (-
21.55%) 

6558377.7 (-
0.01%) 

6558324 (-
0.01%) 

6871630.9 
(4.76%) 6558890.5 (0%) 

2007 

1899415.337 

1955999.6 
(2.98%) 1830915.2 (-3.61%) 284929.1 (-85%) 

1775922.6 (-
6.5%) 

1745868 (-
8.08%) 

1622190.2 (-
14.6%) 

1752644.6 (-
7.73%) 

2008 

1173361.363 

1266288.2 
(7.92%) 965563 (-17.71%) 

604527.4 (-
48.48%) 

978681.9 (-
16.59%) 

937510.5 (-
20.1%) 

1392213.4 
(18.65%) 

954725.1 (-
18.63%) 

2009 

1361516.834 

1496967 
(9.95%) 1285722.2 (-5.57%) 

2227882.3 
(63.63%) 

1237024.2 (-
9.14%) 

1208314.7 (-
11.25%) 

1740691.7 
(27.85%) 

1306137.8 (-
4.07%) 

2010 

1071971.475 

1252799.9 
(16.87%) 1054805.8 (-1.6%) 1506087.2 (40.5%) 

1062681.3 (-
0.87%) 

1014839.8 (-
5.33%) 

1234426.1 
(15.15%) 

1079547.4 
(0.71%) 

2011 

1506880.925 

1681186.2 
(11.57%) 1504108.4 (-0.18%) 

2156486.8 
(43.11%) 

1504117.9 (-
0.18%) 

1504146.6 (-
0.18%) 

1447667.9 (-
3.93%) 

1504264 (-
0.17%) 

2012 

2225735.614 

2429711.6 
(9.16%) 2015850.1 (-9.43%) 

1022840.2 (-
54.04%) 

2023205 (-
9.1%) 

1941662 (-
12.76%) 

1949139.3 (-
12.43%) 

2036282.1 (-
8.51%) 

2013 

2935971.557 

2938987.1 
(0.1%) 2717202.9 (-7.45%) 

1973000.2 (-
32.8%) 

2788836.9 (-
5.01%) 

2630668.7 (-
10.4%) 

2713940.1 (-
7.56%) 

2802951.1 (-
4.53%) 



 L.3-15 

Year NAA Alt1 Alt2wTUCP woVA  

Alt2woTUCP 

woVA  

Alt2woTUCP 

DeltaVA  

Alt2woTUCP 

AllVA  Alt3 Alt4 

2014 

436338.9637 

633704.7 
(45.23%) 204716.1 (-53.08%) 

1625456.6 
(272.52%) 

305846.3 (-
29.91%) 

302468.6 (-
30.68%) 

351365 (-
19.47%) 

315549.8 (-
27.68%) 

2015 

743471.4595 

751759.8 
(1.11%) 824874 (10.95%) 1546391.8 (108%) 

693295.8 (-
6.75%) 

698065.2 (-
6.11%) 

718351.1 (-
3.38%) 

624328.5 (-
16.03%) 

2016 

1069988.494 

993376.5 (-
7.16%) 996050.8 (-6.91%) 

807761.5 (-
24.51%) 

892534.7 (-
16.58%) 

863143.1 (-
19.33%) 

1408894 
(31.67%) 

1059016 (-
1.03%) 

2017 

665045.8628 

728054.4 
(9.47%) 656435.9 (-1.29%) 921416.8 (38.55%) 

656582.6 (-
1.27%) 

655508.5 (-
1.43%) 

926410.6 
(39.3%) 

630336.9 (-
5.22%) 

2018 

1531223.672 

1595583.4 
(4.2%) 

1181949.9 (-
22.81%) 

1803554.9 
(17.79%) 

1177801.3 (-
23.08%) 

1152991.8 (-
24.7%) 

827462.3 (-
45.96%) 

1618826.5 
(5.72%) 

2019 

2765081.534 

2958158.1 
(6.98%) 2742245.7 (-0.83%) 

3575680.1 
(29.32%) 

2742350.3 (-
0.82%) 

2738325.2 (-
0.97%) 

3091360 
(11.8%) 

2643601.5 (-
4.39%) 

2020 

2141768.12 

2281827.5 
(6.54%) 2142056.6 (0.01%) 

4297050.9 
(100.63%) 

2145643.7 
(0.18%) 

1951396.9 (-
8.89%) 

2439424.6 
(13.9%) 

2268027.4 
(5.9%) 

2021 

3059232.437 

3474810.2 
(13.58%) 

2290432.4 (-
25.13%) 

5108254.4 
(66.98%) 

2661664.8 (-
13%) 

2545931.6 (-
16.78%) 

2867744.2 (-
6.26%) 

2447288.5 (-
20%) 
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L.3.6 Supplemental Materials 

L.3.6.1 Lasso modeling 

Justification for using Lasso modeling for variable selection prior to BIC-based model selection 

Compared to Repeated BIC, LASSO models: 

• Handles multicollinearity 

• Perform well when the number of predictors exceeds the sample size or when strong 

correlations exist among predictors. 

• Creates quantitative measures of variable importance. Easy to interpret or extend to other 

models. 

• Repeatable. Output does not depend on variable names or order they were entered. 

• No data dredging. Stepwise selection is prone to overfitting with small data sets. Does not 

need to be adjusted for multiple tests (Bonferroni corrections). 

L.3.6.2 Predictive plots for competing models (1,2,4, and 7) identified in the 

model selection process based on BIC values. 

Below are predictive plots for the four competing models identified using BIC (Models 1, 2, 4, 

and 7). It should be noted that when using information theoretic methods there is little support 

for selecting a single model among those that found to be competing with ∆ BIC values and 

model weights. In this case, model averaging is recommended to integrate the information 

available from all the competing models. Thus, it would not be appropriate to interpret one 

competing model to the exclusion of the others. 
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Figure L.3-6. Observed JPI and Model 1 predictive JPI, by year (2002 - 2022). 
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Figure L.3-7. Observed JPI and Model 2 predictive JPI, by year (2002 - 2022). 
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Figure L.3-8. Observed JPI and Model 4 predictive JPI, by year (2002 - 2022). 
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Figure L.3-9. Observed JPI and Model 7 predictive JPI, by year (2002 - 2022). 
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