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Appendix F, Modeling 
Attachment F.4 Delta Smelt Life Cycle Model 

with Entrainment 

F.4.1 Model Overview 
Polansky et al. (2021) developed a hierarchical stage-structured state-space life cycle model for 
Delta Smelt to identify factors with the strongest statistical support for having influence on the 
species’ recruitment and survival. This modeling approach is useful as an ecological modeling 
tool because it can separate descriptions of state and observation processes and permit the 
integration of disparate data sets. This Delta Smelt life cycle model was later expanded from four 
to seven life stages with a component that separately describes the entrainment process at the 
Delta export facilities (Smith et al. 2021). This model produces expected values for larval 
recruitment and survival at the subsequent life stages. The most statistically supported model 
variant in Smith et al. (2021) used means of December-June Old and Middle River (OMR) 
values and June-August outflow aggregated from monthly values or longer timescales; therefore, 
CalSim output for the scenarios/alternatives can be directly incorporated into the model 
framework. The most statistically supported model in Smith et al. (2021) also included food/prey 
metric term during the months of January to March. By using the relationship between 
zooplankton density and salinity, CalSim-predicted X2 values were then used to estimate the 
expected change in the food/prey metric for January-March months across alternatives. 
Reclamation used this model to calculate expected annual population growth rate (λ; the 
abundance of current year divided by abundance from previous year) for alternative flow 
scenarios by using CalSim output and subsequent zooplankton model. The metric of interest will 
be geometric mean of λ for a specified time frame (e.g., 1995-2015), which will be compared 
across alternatives. For the purpose of this text, Smith et al.’s (2021) model will be referred to as 
the Delta Smelt Life Cycle Model with Entrainment (LCME). 

F.4.2 Methods, assumptions 
The Delta Smelt LCME was run based on flow inputs from CalSim 3. The approach followed the 
Collaborative Science and Adaptive Management Program (CSAMP) Delta Smelt Structured 
Decision Making (SDM) process, where historical years (1995-2015) were adjusted according to 
a CalSim 3 scenario and the geometric mean λ was calculated for each scenario. There is an 
expectation that zooplankton abundance (i.e., prey item for Delta Smelt) would change based on 
flow (Kimmerer and Rose 2018), and as such, a zooplankton submodel constructed for the Delta 
Coordination Group and CSAMP Delta Smelt SDM was applied to the CalSim 3 scenarios. For 
the zooplankton term, an upper and lower 95% confidence intervals were calculated and applied 
into the analysis to better understand sensitivity of the model output to variation in zooplankton 
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abundance. We did not update any other model inputs (turbidity, temperature, and predators) due 
to the complexity and lack of predictive models associated with the other values. Furthermore, it 
is unclear whether flow changes at a project operations scale meaningfully affect the functioning 
of the Bay-Delta food web. What is of interest in this analysis is to determine how much the 
expected long-term abundance of delta smelt might change based on the proposed changes in 
water management. 

F.4.2.1 Main model 
Monthly flow data were pulled from CalSim 3 dss files through R and were summed or averaged 
depending on the variables for the LCME. Old and Middle river flow variables were either 
extracted directly from CalSim 3 as monthly average value in cfs, or averaged if the timespan 
covers two months (Table F.4-1). Sum of Delta outflow from June to August were calculated by 
multiplying the CalSim 3 predicted monthly Net Delta Outflow Index (NDOI-ADD + NDOI-
MIN) by the number of days for each month and then added together. The total values in cfs per 
day were then converted to acre-feet (1 cfs = 1.983 acre-feet per day). Methods and findings of 
the original application of LCME can be found in Smith et al. (2021). The list of LCME flow 
variables that were acquired from the CalSim 3 runs can be found in Table F.4-1. R script and 
data used for the model can be found at https://github.com/BDO-Science/DeltaSmelt_LCM. 

Table F.4-1. List of covariates used in LCME that were replaced with values from CalSim 3 
for each alternative. The Old and Middle River covariates imply entrainment as the 
mortality mechanism (Smith 2019; Smith et al. 2020). The Delta outflow covariate implies 
foraging habitat suitability as a suite of mechanisms that align better when outflow is 
elevated (Smith and Nobriga 2023). The covariates are listed in the order they affect a 
given cohort in the model. 

Life stage Covariate Unit Covariate summary details 
Early post-larval 
(May) 

April-May Old and 
Middle river flow 

cfs Mean of the daily sum of tidally filtered flows in 
the Old and Middle rivers during April to May 

Late post-larval 
(June) 

June-August Outflow Acre-
foot 

Sum of the volume of water moving past a point 
near the confluence of the Sacramento and San 
Joaquin rivers, near Pittsburg, California, during 
June to August 

Late post-larval 
(June) 

June Old and Middle 
river flow 

cfs Mean of the daily sum of tidally filtered flows in 
the Old and Middle rivers during June 

Early subadult 
(October-November) 

December-January Old 
and Middle river flow 

cfs Mean of the daily sum of tidally filtered flows in 
the Old and Middle rivers during December to 
January 

Late subadult 
(January-February) 

February Old and 
Middle river flow 

cfs Mean of the daily sum of tidally filtered flows in 
the Old and Middle rivers during February 

Early adult (March) March Old and Middle 
river flow 

cfs Mean of the daily sum of tidally filtered flows in 
the Old and Middle rivers during March 
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F.4.2.1.1 Assumptions related to the model calibration and new flow inputs 
• The LCME was parameterized using Old and Middle River (OMR) flow values derived 

from the USGS gages and Delta Outflow estimates from DAYFLOW, available at 
https://data.cnra.ca.gov/dataset/dayflow, which may differ to some extent with how 
CalSim 3 calculates these values (OMR and Delta Outflow). 

• The LCME separately accounts for the influence of OMR and turbidity on delta smelt 
entrainment. However, the CalSim 3 runs had assumptions built into them about how 
frequently turbidity triggers that affect OMR would occur. This confounds the turbidity 
effect on entrainment with the OMR effect in a way that the LCME cannot account for. 
This may lead to a negative bias in the predicted effect of entrainment; in other words, it 
may be underestimated somewhat. 

• The only flow data included in the published LCME (Smith et al. 2021) are OMR and 
June-August Delta Outflow. In essence, the LCME assumes that these are the most 
influential flow variables associated with Delta Smelt recruitment and survival. This 
assumption was supported by Polansky et al. (2021), which is why these flow variables 
were carried forward and re-tested in the Smith et al. (2021) model. 

• This analysis consisted of the years 1995 to 2015, so it is unclear how representative 
model predictions of Delta Smelt population trajectory will be when simulating scenarios 
that include environmental conditions outside the range of observations the model was fit 
to. In addition, it is unclear how model parameter estimates and predictions of Delta 
Smelt population may be affected by climate change impacts and the ongoing and 
proposed supplementation efforts. 

F.4.2.2 Zooplankton model 
To calculate zooplankton abundance/density changes related to changes in flow associated with 
the CalSim 3 scenarios, Reclamation leveraged the zooplankton abundance estimation process 
used in the CSAMP Delta Smelt SDM group. To replicate the zooplankton abundance calculation 
used in the CSAMP Delta Smelt SDM process, estimated X2 values for each month were first 
retrieved from CalSim 3 dss files. These monthly X2 values were then converted into salinity 
values for each region defined in the Delta Smelt Individual-Based Model (IBM) (Rose et al. 
2013) using a generalized linear model developed by Compass. 

Similar to the CSAMP Delta Smelt SDM process, Generalized Additive Models (GAMs) were 
constructed to predict the zooplankton density Delta Smelt were expected to spatially overlap 
with given a salinity level for each IBM region and zooplankton taxon. Predictor variables for 
each GAM were the tensor product smooth of the interaction between salinity and day of year, as 
well as random effects for year and station (when more than one station exists in the dataset). To 
produce the monthly model output, the 15th of each month was used as the data input. 
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Once salinity values were calculated for each Delta Smelt IBM region, month, and scenario, 
expected zooplankton densities were then estimated for every zooplankton taxon, month, region, 
and scenario using output from the GAMs. Upper and lower 95% confidence intervals from 
these predictions were calculated through 1,000 independent draws from the model distribution, 
similar to a bootstrapping process. Just as was done in the CSAMP Delta Smelt SDM process, 
for each alternative, the initial output was scalar values of the taxa-specific zooplankton density 
under the particular management conditions divided by the same prediction under 
baseline/historical conditions. However, because 0 values were present in the baseline, it resulted 
in infinite values for the scalar calculations. These infinite values were replaced with the 
maximum finite scalar calculated from model predictions for a specific alternative, taxon, region, 
and month (across years). When this step still yielded no finite scalar value, the maximum finite 
scalar value from a given alternative, taxon, and month was used instead. 

Because the Delta Smelt IBM and LCME differ in how regions are defined and how zooplankton 
taxa are grouped, additional conversions were needed. The Delta will continue to be managed as 
a freshwater ecosystem (i.e., not expected to vary much in terms of salinity) in the near future, 
and as such, any IBM regions upstream of the Confluence were ignored, and likewise LCME 
North and South regions were left as is (Figure F.4-1). The Far West LCME region only 
overlapped with the SW Suisun IBM region and thus, the SW Suisun IBM region results were 
used to define zooplankton changes in the Far West LCME region. To calculate zooplankton 
changes in the West LCME region, the following IBM regions were used: NW Suisun, NE 
Suisun, SE Suisun, Suisun Marsh, and the Confluence. Results from the five IBM regions within 
the West LCME region were aggregated by multiplying each IBM region’s value with the 
proportion of the region’s water volume relative to the total water volume across all five regions. 
The calculations were as follows: 

• Far West LCME region: SW Suisun IBM region (Figure F.4-1) 

• West LCME region: (Confluence IBM region x 0.233) + (Suisun Marsh IBM region x 
0.174) + (NE Suisun IBM region x 0.110) + (SE Suisun IBM region x 0.220) + (NW 
Suisun IBM region x 0.264) 
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Figure F.4-1. Map of the San Francisco Bay-Delta with LCME regions shown in black (top) 
and IBM regions shown in red (bottom). 
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The LCME uses aggregate zooplankton biomass per volume values calculated by summing a 
number of different zooplankton species and life stages, whereas IBM taxa were more specific, 
often down to species. Therefore, the proportion of each zooplankton taxa that make up the 
aggregate zooplankton groups in the LCME data input had to be first estimated for each month 
and LCME region using raw data provided by the primary authors of the LCME 
(“ZooMysid_74_19_df.csv”). Using these proportions, the final scalar multiplier values were 
acquired for the Far West and West LCME regions and zooplankton aggregate groups. In other 
words, the multiplier scalar values were applied based on the proportion of the particular taxon 
that make up the prey biomass for a given month and LCME region. For example, if 
Pseudodiaptomus forbesi adults are expected to be twice as abundant and Eurytemora affinis 
adults are expected to be three times as abundant under an alternative, and the two species make 
up 50% of the biomass each, the final multiplier scalar values will be 2.5 (i.e., [2 x 0.5] + [3 x 
0.5]). 

These final scalar multipliers were then applied to the LCME aggregated zooplankton dataset 
(“ZooMysid_74_19_df_median.csv”) for the median estimate and the lower and upper 95% 
confidence interval values (Figure F.4-2). These predictions were then capped at the maximum 
value that was observed in the LCME aggregated zooplankton dataset 
(“ZooMysid_74_19_df_median.csv”) for the region and month using only data from 1995 to 
2019. Lastly, the prey covariates (see Table F.4-3) were acquired by calculating the mean across 
the four LCME regions. 

Table F.4-2. List of taxa analyzed using GAM and the equivalent LCME taxa used to 
calculate the proportion of each taxon that make up the prey biomass at a given month 
and LCME region. 

GAM response 
variable Taxon definition 

LCME taxon used to calculate proportion of 
prey biomass for each month and LCME region 

acartela Acartiella sinensis (copepod) 
adults 

Acartiella sinensis (copepod) adults 

eurytem Eurytemora affinis (copepod) 
adults 

Eurytemora affinis (copepod) adults 

pdiapfor Pseudodiaptomus forbesi 
(copepod) adults 

Pseudodiaptomus forbesi (copepod) adults 

othcalad Other calanoid copepod adults Other calanoid adults + Sinocalanus doerrii (copepod) 
adults 

othcaljuv Other calanoid copepodites Calanoid copepodids + Other calanoid copepodids + 
Eurytemora affinis copepodids + Sinocalanus doerrii 
copepodids + Pseudodiaptomus spp. Copepodids + 
Acartiella sinensis copepodids + Acartia spp. 
Copepodids + Diaptomidae copepodids + Tortanus 
spp. copepodids 

limno Limnoithona spp. copepods (all 
stages) 

Limnoithona spp. + Limnoithona sinensis + 
Limnoithona tetraspina 
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GAM response 
variable Taxon definition 

LCME taxon used to calculate proportion of 
prey biomass for each month and LCME region 

othcyc Other cyclopoid copepods (all 
stages) 

Acanthocyclops vernalis 

allcopnaup Copepod nauplii (all spp.) Copepod nauplii + Other copepod nauplii + 
Eurytemora affinis nauplii + Sinocalanus doerrii nauplii 
+ Pseudodiaptomus spp. nauplii 

daphnia Daphnia spp. (cladocerans) Daphnia spp. (cladocerans) 

othclad Other cladocerans Bosmina longirostris + Diaphanosoma spp. + Other 
cladocera 

other All other taxa N/A (model was not used) 

mysid Hyperacanthomysis longirostris Hyperacanthomysis longirostris + Neomysis mercedis 

As zooplankton covariates for natural mortality were only supported for adult life stages (Smith 
et al. 2021), only zooplankton modeling results from the months of February and March were 
used as data input for the LCME (Table F.4-3). In other words, a flow effect on delta smelt’s food 
supply is only supported statistically in February-March. The most parsimonious mechanistic 
explanation is that prey available to adult fish early in the spawning season had a population-
scale effect, perhaps by affecting how many eggs could be produced or affecting how many 
adults survived to spawn a second time. R script and data used for the salinity and zooplankton 
models can be found at https://github.com/BDO-Science/DeltaSmelt_LCM. 

 

Figure F.4-2. Summary of steps taken to generate estimates of the zooplankton prey 
density metric for each alternative. 
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Table F.4-3. List of covariates used in LCME that were replaced with new values based on 
CalSim 3 and zooplankton model for each alternative. The mechanism implied by these 
prey density covariates is related to food limitation of adult spawners that may affect 
the number or quality of eggs produced or the number of repeat spawns the fish are 
able to complete before dying. 

Life stage Covariate Unit Covariate summary details 
Late subadult (January-
February) 

Food metric for 
February 

Microgram carbon per 
meter3 

Mean carbon-weighted density 
of adult calanoid copepods, 
cyclopoid copepods, 
cladocerans, and mysid shrimp 
observed during February 
zooplankton surveys 

Early adult (March) Food metric for March Microgram carbon per 
meter3 

Mean carbon-weighted density 
of adult calanoid copepods, 
cyclopoid copepods, 
cladocerans, and mysid shrimp 
observed during March 
zooplankton surveys 

F.4.2.2.1 Assumptions related to the model calibration and new flow inputs 
The zooplankton modeling workflow used salinity to estimate changes in zooplankton biomass 
related to flow. There are several mechanisms by which a correlation between flow and 
zooplankton biomass may arise that are not based on salinity per se such as transport from 
upstream, estuarine circulation, etc. 

The use of salinity as a covariate also meant that predicted zooplankton biomass at a particular 
region is static anywhere and everywhere salinity is ≤0.1 ppt salinity, even with additional Delta 
outflow. 

The original purpose of the salinity and zooplankton modeling was to adjust zooplankton data 
input for the Delta Smelt IBM (Rose et al. 2013; Kimmerer and Rose 2018). As such, there were 
limitations when the data were converted for the purpose of Delta Smelt LCME (e.g., some 
missing species and/or life stages in the aggregate LCME zooplankton groups). 
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F.4.3 Results 
The general statistical prohibition against extrapolation suggests that model predictions are more 
uncertain when explanatory variables are outside the range of observations to which the model 
was fit. To visually inspect when the predicted flows and food were outside the 
observed/empirical range for the LCME, output from CalSim 3 and the zooplankton model were 
plotted against the empirical data (i.e., data used to estimate parameters in the LCME). See 
Figure F.4-3 through Figure F.4-5 below. Most CalSim-predicted flows and zooplankton 
predictions were not outside the range of observations to which LCME was fit, but some 
alternatives did include out-of-range values. EXP1 included much lower June-August Delta 
Outflows than observed and higher (more positive) OMR values than observed in some years. 
EXP3 OMR values were similar to EXP1, but EXP3 June-August Delta Outflows were within 
the observed range. Alt1, the components of Alt2, and Alt4 contained some April-May OMR 
values that were more negative than the observed range. Alt1 also contained OMR values more 
negative than the observed data for the months of December-January and March. Overall, 
CalSim-predicted June-August Outflow values were generally lower than the DAYFLOW 
estimates under Wet or Above Normal years (Figure F.4-3, Figure F.4-6). Predicted prey biomass 
for all alternatives was within the observed range (Figure F.4-5). However, for certain years 
higher prey biomass than the empirical data were predicted for all alternatives (Figure F.4-3). As 
a result, mean predicted prey biomass across all alternatives were also higher than the observed 
data (Figure F.4-5 through Figure F.4-7). 
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Figure F.4-3. Annual time series of outflow and prey metric data based on CalSim3 data 
and salinity-zooplankton model relative to the original dataset used to build the Delta 
Smelt LCME (labeled as “Empirical”). From top to bottom: June-August sum of Delta 
outflow, February, and March prey metric (biomass per volume) data composed of adult 
copepods, cladocerans, and mysids. Note that the x-axis represents Delta Smelt cohort 
year (e.g., February and March prey metric for cohort year 2012 represents data for 
February and March of 2013). 
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Figure F.4-4. Annual time series of monthly average OMR flow data for input to the 
LCME produced from CalSim3 relative to the original LCME dataset (labeled as 
“Empirical”). (e.g., February and March OMR values for cohort year 2012 represents data 
for February and March of 2013). 
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Figure F.4-5. Box plot of covariate values for cohort year 1995 to 2015 sorted by 
alternative. 
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Figure F.4-6. Mean covariate values used in the LCME for Wet and Above Normal year 
types. Note that cohort year was matched with the water year that the cohort was born 
in (e.g., cohort year 1995 = water year 1995). 
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Figure F.4-7. Mean covariate values used in the LCME for Below Normal, Dry, or Critically 
Dry year Note that cohort year was matched with the water year that the cohort was 
born in (e.g., cohort year 1995 = water year 1995). 
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Estimates of population growth rate (λ; the abundance of current year divided by abundance from 
previous year) are provided for each cohort year and alternative (Table F.4-4; Figure F.4-8). 
Generally, dry years showed lower geometric mean λ than wet years (Table F.4-5), and wet years 
occurred with greater frequency at the beginning of the time series (1995-1999) compared to the 
end of the time series (2006-2015). 

Summarized across all years by calculating the geometric mean of λ for the full 21-year time 
series (1995-2015), predicted flow and zooplankton conditions associated with EXP3 resulted in 
the highest mean λ, followed by Alt3 (Figure F.4-9). Meanwhile predicted conditions associated 
with Alt1 resulted in the lowest value of mean λ. All other alternatives resulted in mean λ 
between 0.95 and 0.97 (Table F.4-5). Relative to the no action alternative (NAA), Alt3 and EXP3 
mean projected λ were the highest among all alternatives, and Alt1 was the lowest (Figure F.4-9). 
Decomposition of mean λ into time series plots of % change of population growth rate for a 
given alternative divided by the population growth rate of NAA demonstrated that EXP3- and 
Alt3-projected λ were greater than NAA in most years (Figure F.4-8). Alt1 projections differed 
from NAA primarily in the first half of the time series (1995-2005) and were very similar to 
NAA projections in the latter half of the time series (2006-2015). EXP1-projected λ were 
relatively greater than NAA in wet years, but less than NAA-projected λ in all other years. 

NAA, the various versions of Alt2, and Alt4 performed similarly to the empirical data. While 
these CalSim-generated scenarios/alternatives resulted in higher λ than the empirical data during 
dry years, they also resulted in lower λ than the empirical data during wet years (Table F.4-5). 
The CalSim-generated scenarios/alternatives (NAA, the various versions of Alt2, and Alt4) may 
have produced higher λ during dry years due to the more positive OMR values for multiple 
months and higher zooplankton estimates in February (Figure F.4-6). Meanwhile, these same 
CalSim-generated scenarios/alternatives (NAA, the various versions of Alt2, and Alt4) may have 
produced lower λ than the empirical data during wet years because of the lower June-August 
Delta Outflow values and more negative OMR values for certain months (Figure F.4-7).
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Table F.4-4. Predicted population growth rate (λ; abundance of current year divided by abundance from previous year) for 
each cohort year by alternatives. λ for cohort year 1995 was calculated by using a static abundance estimate for cohort 
year 1994. Empirical indicates the observed data used by the LCME. 

Year Empirical Alt1 
Alt2v1 
wTUCP 

Alt2v1 
woTUCP 

Alt2v2 
noTUCP 

Alt2v3 
noTUCP Alt3 Alt4 EXP1 EXP3 NAA 

Sacramento Valley 
Water Year Index 

1995 3.56 1.63 1.78 1.79 1.80 1.78 2.25 1.84 4.25 4.05 1.86 Wet 
1996 1.37 0.66 0.64 0.64 0.65 0.65 1.06 0.64 1.04 1.27 0.73 Wet 
1997 0.68 0.38 0.56 0.57 0.57 0.57 0.78 0.59 0.57 0.99 0.59 Wet 
1998 4.78 1.75 1.70 1.67 1.68 1.68 3.03 1.73 5.15 4.88 1.82 Wet 
1999 0.79 0.56 0.69 0.70 0.68 0.70 0.89 0.69 0.94 1.27 0.79 Wet 
2000 0.69 0.45 0.83 0.83 0.88 0.89 0.81 0.78 0.79 1.17 0.90 Above Normal 
2001 0.11 0.12 0.30 0.30 0.33 0.34 0.50 0.30 0.32 0.53 0.31 Dry 
2002 0.55 0.68 0.94 0.96 1.04 1.03 1.24 0.94 0.69 1.16 0.93 Dry 
2003 0.87 0.71 1.45 1.46 1.54 1.54 1.58 1.45 1.36 2.12 1.51 Above Normal 
2004 0.44 0.46 0.84 0.84 0.87 0.87 0.97 0.83 0.53 0.91 0.87 Below Normal 
2005 1.94 1.04 1.27 1.27 1.34 1.36 1.58 1.28 2.66 2.85 1.31 Above Normal 
2006 3.37 2.04 2.31 2.35 2.40 2.45 2.58 2.29 3.34 3.67 2.41 Wet 
2007 0.51 0.33 0.57 0.57 0.58 0.57 0.83 0.53 0.46 0.77 0.57 Dry 
2008 0.95 1.00 1.10 1.10 1.17 1.18 1.50 1.07 0.70 1.11 1.09 Critically Dry 
2009 0.64 0.45 0.68 0.68 0.68 0.67 0.76 0.66 0.54 1.02 0.67 Dry 
2010 1.26 1.31 1.45 1.45 1.47 1.43 1.66 1.46 1.87 1.97 1.48 Below Normal 
2011 3.65 3.14 3.26 3.24 3.24 3.25 3.13 3.28 5.57 5.47 3.23 Wet 
2012 0.95 0.74 0.98 0.99 1.00 1.00 1.15 1.00 0.67 1.10 1.02 Below Normal 
2013 0.90 0.87 0.88 0.88 0.87 0.86 1.04 0.87 0.50 0.83 0.87 Dry 
2014 0.43 0.43 0.48 0.52 0.51 0.52 0.71 0.46 0.38 0.57 0.47 Critically Dry 
2015 0.66 0.65 0.56 0.63 0.63 0.63 0.74 0.56 0.41 0.60 0.56 Critically Dry 
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Table F.4-5. Geometric mean of predicted population growth rate (λ) across all years and binned into wetter and drier 
years for all alternatives. Empirical scenario indicates the LCME fit to observed data, while all alternative models represent 
simulations using CalSim output. 

Category Alt1 
Alt2v1 
woTUCP 

Alt2v1 
wTUCP 

Alt2v2 
noTUCP 

Alt2v3 
noTUCP Alt3 Alt4 EXP1 EXP3 Empirical NAA 

1995-2015 0.72 0.95 0.94 0.98 0.98 1.20 0.94 1.01 1.41 0.96 0.97 

Below Normal, Dry, or 
Critically Dry years 

0.54 0.75 0.74 0.77 0.77 0.95 0.72 0.57 0.90 0.58 0.74 

Wet and Above 
Normal years 

0.98 1.24 1.24 1.27 1.28 1.55 1.25 1.91 2.32 1.68 1.32 
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Figure F.4-8. Annual time series of delta smelt population growth rate. Top: Line plot of 
population growth rate (λ) across alternatives as seen in Table F.4-4. Bottom: Line plot 
showing % change calculated as λ for a given alternative divided by estimated 
population growth rate for NAA (no action alternative); no change from NAA = 100. 
Note the color change for NAA in the bottom figure. 
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Figure F.4-9. Mean population growth rates aggregated across the years. Top: Bar plot 
demonstrating the geometric mean of population growth rate (lambda) from 1995 to 
2015 for the various alternatives as seen in Table F.4-5. Bottom: Bar plot demonstrating 
the relative difference in geometric mean of population growth rate (1995-2015) for 
each alternative compared to the no action alternative ([𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜆𝜆𝑎𝑎𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎]/ 
𝜆𝜆𝑎𝑎𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎). Negative numbers indicate alternatives that result in poorer conditions for 
delta smelt and positive numbers indicate alternatives that are predicted to improve 
conditions. 
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F.4.3.1 Key Takeaways 
• Geometric mean of population growth rate from 1995 to 2015 only showed considerable 

differences from the observed data and/or NAA for EXP3, Alt1, and Alt3 scenarios, 
where EXP3 and Alt3 performed better than most scenarios/alternatives (i.e., higher λ) 
and Alt1 performed worse than most alternatives (i.e., lower λ). 

• EXP3 and Alt3 scenarios likely produced in higher λ due to more positive OMR flows for 
most months and the relatively high June-August Delta Outflow during dry years (Figure 
F.4-5, Figure F.4-6). 

• Alt1 scenario likely produced lower λ relative to most scenarios due to the more negative 
OMR flows during most months (Figure F.4-5, Figure F.4-6). 

• NAA, all components of Alt2, and Alt4 did not produce considerably higher λ than the 
empirical data despite OMR restrictions that should reduce entrainment. This may be due 
to either how flow is calculated from CalSim 3 or the apparent trade-off between OMR 
flow and summer Delta outflow that somehow occurred between these alternatives and 
the empirical data (Figure F.4-3, Figure F.4-4). 

F.4.3.2 BA Takeaways 
The Delta Smelt Life Cycle Model with Entrainment Analysis (LCME) produces estimated 
values for larval recruitment and survival at the subsequent life stages (Smith et al. 2021). The 
most statistically supported model used means of December-June Old and Middle River (OMR) 
values, June-August outflow aggregated from monthly values or longer timescales, and 
aggregated food/prey metric from January to March. The model is used to calculate expected 
annual population growth rate (λ; the abundance of current year divided by abundance from 
previous year) as a performance measure of Delta seasonal flow operations influence on OMR 
and outflow over a twenty year time period (1995-2015). 

The general statistical prohibition against extrapolation suggests that model predictions are more 
uncertain when explanatory variables are outside the range of observations to which the model 
was fit. Most CalSim-predicted flows and zooplankton predictions were not outside the range of 
observations to which the Delta smelt LCME was fit, but some alternatives did include out-of-
range values. EXP1 included much lower June-August Delta Outflows than observed and higher 
(more positive) OMR values than observed in some years. EXP3 OMR values were similar to 
EXP1, but EXP3 June-August Delta Outflows were within the observed range. The multiple 
components of the PA also contained some April-May OMR values that were more negative than 
the observed range. Overall, CalSim-predicted June-August Outflow values were generally lower 
than the empirical data under Wet or Above Normal years. Predicted prey biomass for all 
alternatives was within the observed range, except for certain years where higher prey biomass 
were predicted than the empirical data for all alternatives. 

The geometric mean of the expected population growth across years (1995-2015), λ, for the PA 
components ranged from 0.95 to 0.98 (Table F.4-6). The means of the expected population 
growth rate varied more widely across water year types, and showed positive growth rates under 
wetter meteorology and negative growth rates under drier meteorology. Note that wetter years 
also occurred with greater frequency at the beginning of the time series (1995-1999) compared to 
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the end of the time series (2006-2015). Predicted flow and zooplankton conditions associated 
with EXP3 resulted in the highest geometric mean λ (1.41), whereas NAA and the various 
components of PA produced geometric mean λ similar to the empirical data (0.95-0.98 vs. 0.96). 
While NAA and the various components of the PA resulted in higher λ than the empirical data 
during drier years, they also resulted in lower λ than the empirical data during wetter years (Table 
F.4-6). 

NAA and the various components of the PA may have produced higher λ during drier years due 
to the more positive OMR values for multiple months and higher zooplankton estimates in 
February. Meanwhile, NAA and the PA components may have produced lower λ than the 
empirical data during wetter years because of the lower June-August Delta Outflow values and 
more negative OMR values for some months. NAA and the PA components did not produce 
higher λ despite OMR restrictions that should reduce entrainment of Delta smelt. This may be 
due to the apparent trade-off between OMR flow and summer Delta outflow that somehow 
occurred between PA components and the empirical data. 

Table F.4-6. Geometric mean of predicted population growth rate (λ) across all years and 
binned into wetter and drier years for all alternatives. Empirical scenario indicates the 
LCME fit to observed data, while all alternative models represent simulations using 
CalSim output. 

Category EXP1 EXP3 NAA 
PAwoTUCP 
woVA 

PAwoTUCP 
DeltaVA 

PAwoTUCP 
SystemwideVA Empirical 

1995-2015 1.01 1.41 0.97 0.95 0.98 0.98 0.96 

Below Normal, Dry, 
or Critically Dry years 

0.57 0.90 0.74 0.75 0.77 0.77 0.58 

Wet and Above 
Normal years 

1.91 2.32 1.32 1.24 1.27 1.28 1.68 

F.4.3.3 EIS Takeaways 
The Delta Smelt Life Cycle Model with Entrainment Analysis produces estimated values for 
larval recruitment and survival at the subsequent life stages (Smith et al. 2021). The most 
statistically supported model used means of December-June Old and Middle River (OMR) 
values, June-August outflow aggregated from monthly values or longer timescales, and 
aggregated food/prey metric from January to March. The model is used to calculate expected 
annual population growth rate (λ; the abundance of current year divided by abundance from 
previous year) as a performance measure of Delta seasonal flow operations influence on OMR 
and outflow over a twenty year time period (1995-2015). 

The general statistical prohibition against extrapolation suggests that model predictions are more 
uncertain when explanatory variables are outside the range of observations to which the model 
was fit. Most CalSim-predicted flows and zooplankton predictions were not outside the range of 
observations to which the Delta smelt LCME was fit, but some alternatives did include out-of-
range values. Alternative 1, the multiple phases of Alternative 2, and Alternative 4 contained 
some April-May OMR values that were more negative than the observed range. Alternative 1 
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also contained OMR values more negative than the observed data for the months of December-
January and March. Overall, CalSim-predicted June-August Outflow values were generally 
lower than the empirical data under Wet or Above Normal years. Predicted prey biomass for all 
alternatives was within the observed range, except for certain years where higher prey biomass 
were predicted than the empirical data for all alternatives. 

The geometric mean of the expected population growth across years (1995-2015), λ, for the 
Alternative 2 phases ranged from 0.94 to 0.98 (Table F.4-7). The means of the expected 
population growth rate varied more widely across water year types, and showed positive growth 
rates under wetter meteorology and negative growth rates under drier meteorology. Note that 
wetter years also occurred with greater frequency at the beginning of the time series (1995-1999) 
compared to the end of the time series (2006-2015). Predicted flow and zooplankton conditions 
associated with Alternative 3 resulted in the highest geometric mean λ (1.20), whereas conditions 
associated with Alternative 1 resulted in the lowest geometric mean λ (0.72). No Action 
Alternative, the various phases of Alternative 2, and Alternative 4 produced geometric mean λ 
similar to the empirical data (0.94-0.98 vs. 0.96). While No Action Alternative, the various 
phases of Alternative 2, and Alternative 4 resulted in higher λ than the empirical data during drier 
years, they also resulted in lower λ than the empirical data during wetter years (Table F.4-7). 

No Action Alternative, the various phases of Alternative 2, and Alternative 4 may have produced 
higher λ during drier years relative to the empirical data due to the more positive OMR values for 
multiple months and higher zooplankton estimates in February. Meanwhile, No Action 
Alternative, the various phases of Alternative 2, and Alternative 4 may have produced lower λ 
than the empirical data during wetter years because of the lower June-August Delta Outflow 
values and more negative OMR values for some months. No Action Alternative, the various 
phases of Alternative 2, and Alternative 4 did not produce higher λ despite OMR restrictions that 
should reduce entrainment of Delta smelt. This may be due to the apparent trade-off between 
OMR flow and summer Delta outflow that somehow occurred between these alternatives and the 
empirical data.
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Table F.4-7. Geometric mean of predicted population growth rate (λ) across all years and binned into wetter and drier 
years for all alternatives. Empirical scenario indicates the LCME fit to observed data, while all alternative models represent 
simulations using CalSim output. 

Category Alt1 
Alt2wo 
TUCPwoVA 

Alt2wTUCP 
woVA 

Alt2woTUCP 
DeltaVA 

Alt2woTUCP 
SystemwideVA Alt3 Alt4 Empirical NAA 

1995-2015 0.72 0.95 0.94 0.98 0.98 1.20 0.94 0.96 0.97 

Below Normal, Dry, or 
Critically Dry years 

0.54 0.75 0.74 0.77 0.77 0.95 0.72 0.58 0.74 

Wet and Above 
Normal years 

0.98 1.24 1.24 1.27 1.28 1.55 1.25 1.68 1.32 
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