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Appendix AB-L, Shasta Coldwater Pool Management 
Attachment L.3 Winter-run Chinook Salmon 

Juvenile Production Index 
Model 

L.3.1 Model Overview 
Winter run Chinook salmon are unique in that they spawn in the late spring and summer when air 
temperatures are at seasonal highs and flows are at seasonal lows. Historically, this run migrated 
to higher elevation habitats where summer water temperatures were more appropriate for 
spawning and egg incubation. The only extant population is now restricted to spawning in the 
reach just below Keswick Dam. Although conditions below the dam are managed to support this 
run, there is concern that conditions during spawning and incubation may be reducing population 
productivity. To explore hypothesized relationships between juvenile winter run production and 
biological and environmental drivers we developed a model using the United States Fish and 
Wildlife Service (USFWS) winter run Chinook salmon juvenile production index (JPI) as the 
response variable. 

The JPI is a standardized estimate of juvenile winter run passage at Red Bluff Diversion Dam. 
Juvenile Chinook salmon migrate past Red Bluff at various life stages and passage may occur 
days to months following emergence. The USFWS uses an assumed survival rate between the fry 
life stage and all-post fry life stages to standardize the estimate into “fry equivalents”. Potential 
predictor variables included metrics of flow, temperature and spawner abundance that were 
constructed to represent hypothesized relationships with productivity. Modeling was performed 
to identify the most explanatory flow and temperature metrics and then information theoretic 
methods were used to select best-approximating models. 

Multi-model averaging led to the identification of two drivers that most affected juvenile winter 
run production; flow during incubation and emergence, and the number of female spawners. The 
predictive strength of flow is important because previous modeling efforts have focused on the 
effect of temperature on egg-to-fry survival, a calculation that uses the response used here (JPI) 
but with additional estimates and assumptions (Martin et al. 2017, Anderson et al. 2022). Neither 
of the previous studies have examined the effect of flow and have instead assumed non-
temperature environmental effects were equal among all years. 
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L.3.2 Model Development 

L.3.2.1 Methods 

L.3.2.1.1 Data 
Twenty-one years of data were used for this modeling (2002-2022). Data were available for 
1996-1999; however, methods for the carcass survey and the specific population estimators used 
were not standardized until 2002. Juvenile data were not available for 2000 and 2001 due to a 
lack of sampling. 

The response variable for this exercise was the winter run juvenile production index (JPI). The 
JPI is a standardized estimate of juvenile winter run passage at Red Bluff Diversion Dam. 
Juvenile Chinook salmon migrate past Red Bluff at various life stages and passage may occur 
days to months following emergence. The USFWS uses an assumed survival rate between the fry 
life stage and all-post fry life stages to standardize the estimate into “fry equivalents”. 

Independent variables were selected based on hypothesized drivers of variation in production and 
included both physical and biological factors (Table L.3-1). Three temperature variables were 
considered. The first two metrics were calculated at the station located on the Sacramento River 
at Highway 44 (CDEC station “SAC”). This location was selected because it is close to the 
midpoint of the winter run spawning habitat. Data from this station were not available in all 
years. When data were not available, it was interpolated using a linear model and values recorded 
at a station upstream (CDEC station “KWK”) and a station downstream (CDEC station “CCR”). 
The two metrics calculated at this site were selected to represent both acute and chronic effects 
of temperature. The first metric was the average daily temperature between July 1st through 
September 30th. This period is when cold water pool is most likely to be limited and most eggs 
hatch by the end of September. This metric represents potential chronic effects of temperate on 
production across this period. The second metric is the number of degree days over 53°F 
(11.67°C) between May 1st and September 30th. This metric represents acute effects that occur 
once a threshold is exceeded while no effect occurs below that threshold. The value chosen for 
the threshold approximates values proposed as necessary to protect incubating eggs. The final 
temperature metric was the mean temperature at Red Bluff diversion Dam (CDEC station 
“RDB”) during the peak month of juvenile winter run catch (October). 

Four flow variables were considered, including: mean flow at Bend Bridge (CDEC station 
“BND”) during incubation and emergence, mean flow at BND during the month of peak catch at 
Red Bluff, and the coefficient of variation in flow at BND during the month of peak catch at Red 
Bluff. 

The estimated number of female winter-run spawners was also considered as a biological 
explanatory variable. 
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Table L.3-1. Environmental variables considered for modeling variation in JPI with a 
description, period represented and hypothesized relationship to JPI. 

Covariate Name Metrics description Months Hypothesis 
Temp_SAC_I Average temperature during key 

incubation period (Jul-Sep) at 
Hwy 44 (SAC). Indexes average 
temperature experienced by 
incubating eggs 

July-September Temperature effects on survival 
are primarily chronic and increase 
linearly with mean daily values in 
the period when cold water 
volume is limiting. 

CD_above_11.67_I Cumulative degrees per day 
above 11.67C during incubation 
period at Hwy 44 (SAC). Indexes 
magnitude of exposure to 
temperature stress 

July-September Temperature effects on production 
are primarily acute and occur 
when a threshold value is 
exceeded 

Temp_RB_M Mean temp @ Red Bluff during 
month of peak migration. 
Indexes metabolic demand of 
juveniles and their predators 

October Higher temperatures during 
rearing/migration increase 
predation intensity and demand 
for prey 

Flow_IE Mean flow at Bend Bridge 
during incubation and 
emergence. 

May-October Mortality effects of flow occur at 
daily time steps during incubation 
and emergence 

Total_discharge_IE Cumulative discharge at Bend 
Bridge (m3) during incubation 
and emergence 

May-October Mortality effects of flow occur at a 
seasonal time step in response to 
the total volume of water 
discharged during incubation and 
emergence 

Flow_M Mean flow at Bend Bridge 
during month of peak migration 

October Survival during migration is 
directly proportional to flow 
magnitude 

Flow_CV_M CV of flow at Bend Bridge 
during peak month of migration 

October Flow pulses increase survival 
(Hassrick et al. 2022) 

L.3.2.1.2 Modeling and Analysis 
We employed several methods to identify and analyze potential factors associated with observed 
JPI. First, we created exploratory scatter plots to visually assess the relationship between 
potential factors and JPI. Then we examined the correlation of these factors, and noted several 
highly correlated pairs (e.g., Flow_IE and Total_Discharge_IE Pearson's correlation > 0.99, see 
Table L.3-2). 

To refine our list of potential factors, we created a Lasso model to highlight the important 
variables among the potential factors (McNeish 2015). Through regularization, Lasso models 
consider penalization for the number of included parameters within the modeling itself, as 
opposed to post hoc comparisons. Because of this, LASSO models perform well when the 
number of predictors exceeds the sample size or when strong correlations exist among predictors 



 L.3-4 

(multicollinearity). Unlike stepwise selection, LASSO models are not running multiple tests, and 
do not need Bonferroni corrections, and are less likely to be overfit due to “data dredging” than a 
stepwise procedure. Similarly, they are not sensitive to variable naming or order since everything 
is considered at once. Finally, LASSO model output contains quantitative measures of variable 
importance that are easy to interpret and extend to other analyses. Overall, LASSO models do a 
good job of highlighting factors most useful for prediction while accounting for correlated 
factors. 

Based on the results of the LASSO model, and potential for managerial control of independent 
variables, we selected a set of a priori models to test. JPI is an integer count that is likely well 
modeled using a count process. Because the JPI data are over-dispersed, with variance 
significantly higher than the mean, we chose to model the process using negative binomial 
regression, with a square root link function that adequately accounts for the over-dispersion 
while still allowing for easy interpretation (as opposed to quasi- methods). 

Models were compared using Bayesian Information Criterion (BIC) scores to determine how 
well models were supported by the data while not being overfit. BIC was selected due to the low 
number of data points and AIC’s propensity for over fitting with small sample sizes. The model 
with the lowest BIC score was designated as the “best fit model” and the BIC value of each 
candidate model was subtracted from the BIC value of the best fit models to calculate the ∆BIC 
value. Models, with ∆BIC values ≤5.0 were considered competing and BIC model weights were 
used to calculate model averaged coefficients and unconditional confidence interval. 
Additionally, leave one out cross validation (LOOCV) was used to estimate R2 as measure of fit 
for individual models. 

Finally, we created a prediction plot to compare the selected model’s predictions to the observed 
JPI values. These plots allow us to assess the accuracy of the model in predicting JPI based on 
the selected variables, and help highlight additional trends in predictions / residuals. All analysis 
was run in R (R Core Team 2023) with Lasso models coming from the glmnet package 
(Friedman et al 2010) 

Table L.3-2. Pearson product-moment correlations between explanatory variables 
considered for use in modeling the winter run Chinook Salmon JPI. 

 
Temp_RB
_M Flow_M 

Flow_CV_
M Flow_IE 

Total_dis
charge_IE 

Temp_SAC
_I 

DD_above
_11.67 

Temp_RB_M 1 N/A N/A N/A N/A N/A N/A 

Flow_M -0.382 1 N/A N/A N/A N/A N/A 

Flow_CV_M 0.214 0.369 1 N/A N/A N/A N/A 

Flow_IE -0.457 0.692 -0.053 1 N/A N/A N/A 

Total_discarge_IE -0.459 0.695 -0.051 >0.99 1 N/A N/A 

Temp_SAC_I 0.906 -0.378 0.258 -0.626 -0.627 1 N/A 

DD_above_11.67_I 0.888 -0.312 0.344 -0.605 -0.606 0.968 1 
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L.3.2.2 Assumptions / Uncertainty 
The monitoring data analyzed here, and by Martin et al. (2017) and Anderson et al (2022), are 
not collected in a way that specific life stages (egg, fry, parr and smolts) can be separated for 
analysis of life stage-specific effects. Thus, there remains uncertainty as to the specific drivers 
affecting individual life stages that contribute to JPI. Field experiments that can elucidate life 
stage-specific drivers and thresholds are needed to develop a more granular understanding and 
ultimately to improve the effectiveness of management actions intended to improve spawning 
success and juvenile production of winter-run Chinook salmon. 

L.3.2.3 Code and Data Repository 
Code is available at: GitHub - fishsciences/2022-shasta_winter_run_survival-Public 

Analysis files for the WR JPI input data and WR JPI analysis are available from Reclamation 
upon request. 

L.3.2.4 Model Development Results 
Exploratory plots showcase a strong relationship between JPI and Females, but also strong 
relationships with flow metrics, and weaker relationships coming from the temperature factors 
(Figure L.3-1). 

 

Figure L.3-1. Exploratory scatter plots comparing JPI to potential factors. 
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The Lasso model showed most support for including Females, Flow_IE, and Flow_CV_M. Out 
of the temperature metrics, Temp_SAC_I had the highest support. Seven candidate models were 
constructed using these variables and evaluated for relative fit as described above (Table L.3-3). 
Three of these models had good support in the data according to their ∆ BIC scores (M1, M2, 
M4). These models explained between 78% and 74% of the total variation in JPI (Table L.3-3). 
All three competing models were used to calculate model averaged coefficients and 
unconditional confidence intervals for each variable (Table L.3-4). Coefficients with 
unconditional confidence intervals that did not include zero were considered to have good 
support in the data (Burnham and Anderson 2002). 

Table L.3-3. Model selection results. Delta BIC is calculated using model 4 as baseline 
and R2 values were calculated using leave-one-out cross validation. 

Model 
Number of 
Parameters BIC ΔBIC R2 

1. Flow_IE + Temp_SAC_I + Flow_CV_M + Females 5 657.339 3.014 0.635 

2. Flow_IE + Females 3 654.330 0.004 0.769 

3. Flow_CV_M + Females 3 672.856 18.531 0.186 

4. Flow_IE, Flow-CV-M + Females 4 654.325 0.00 0.639 

5. Temp_SAC_I + Females 3 669.202 14.876 0.613 

6. Temp_SAC_I + Flow_CV_M + Females 4 671.468 17.143 0.325 

7. Flow_IE + Temp_SAC_I + Females 4 657.249 2.924 0.757 

Table L.3-4. Model averaged parameters and unconditional 95% confidence intervals 
calculated using the four top models selected with BIC. 

 Estimate Lower CI Upper CI 
Intercept -912 -1474 -332 

Females 0.179 0.101 0.265 

Flow_IE 6.656 5.133 7.993 

Flow-CV-M -2730 -4652 323 

Temp_SAC_I -25.443 -88.533 180.422 

Model averaging found that two independent variables were well supported by the data 
(unconditional confidence interval did not include zero). These were the number of female 
spawners and mean flow during the incubation and early emergence period (Table L.3-4). Both 
variables had a direct relationship with JPI. Two variables were not well supported including the 
coefficient of variation in flow during the peak month of passage at Red Bluff and mean water 
temperature at Highway 44 during incubation and emergence. Model averaged coefficients 
predicted JPI values which closely tracked observed JPI across years, with the largest deviation 
occurring in 2009 (Figure L.3-2). 
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Figure L.3-2. Observed JPI values from 2002 to 2022 and predicted values using model 
averaged coefficients. 

L.3.2.5 Model Development Discussion 
Model selection and multi-model averaging identified the number of female spawners and flow 
during incubation and emergence as the two best supported predictors of juvenile winter run 
production. Both variables are well supported in the literature with a long history of research on 
the relationship between spawner abundance and juvenile recruitment (Subbey et al. 2014) and 
the effect of flow on juvenile production (e.g., Munsch et al. 2020). Thus, the importance of 
these variables was not surprising. Within the Sacramento River, previous modeling efforts have 
focused on the effect of temperature on egg-to-fry survival, a calculation that uses the response 
used here (JPI) but with additional estimates and assumptions (Martin et al. 2017, Anderson et al. 
2022). Neither of the previous studies have examined the effect of flow and have instead 
assumed non-temperature effects were equal among all years. This analysis indicates that 
interannual variation in flow has a well-supported effect on juvenile winter-run production 
whereas the effect of temperature was not as well supported. 
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There has been considerable research on how temperature affects the survival of Chinook salmon 
eggs and strong effects have been identified (Beacham and Murray 1989, Geist et al. 2006). 
Thus, it may initially be surprising that temperature was not a strong driver in this analysis. 
However, operations of Shasta Reservoir are designed to help ensure temperatures in the 
spawning and egg incubation reach remain below levels where laboratory studies suggest rapidly 
increasing mortality will occur (USFWS 1999). Modeling by Martin et al. (2017) and Anderson 
et al. (2022), assume that temperature is the only interannual environmental driver of survival. 
The highest temperatures often occur in the lowest flow years. However, the effect of flow has 
not previously been tested, and the conclusion of the Martin et al. (2017) was that the threshold 
temperature must be lower in the field than what has been derived from laboratory studies. 
Martin et al. (2017) acknowledges that an alternative hypothesis to explain their findings is that 
some factor other than temperature is influencing interannual variation. This analysis provides 
strong evidence for this alternative hypothesis with flow enjoying stronger support than water 
temperature. 

The monitoring data analyzed here, and by Martin et al. (2017) and Anderson et al (2022), are 
not collected in a way that specific life stages (egg, fry, parr and smolts) can be separated for 
analysis of life stage-specific effects. Thus, there remains uncertainty as to the specific drivers 
affecting individual life stages that contribute to JPI. Field experiments that can elucidate life 
stage-specific drivers and thresholds are needed to develop a more granular understanding and 
ultimately to improve the effectiveness of management actions intended to improve spawning 
success and juvenile production of winter-run Chinook salmon. 

L.3.3 Model Application 
For this effects analysis, the JPI model was run for years 2002-2022 when data on female 
spawners was available. Temperature data at node (BLW KESWICK) from the HEC-5Q model 
was used to represent the CDEC station SAC (Sacramento River at Highway 44). Flow data from 
Calsim 3 node (C_SAC257) was used to represent CEDC station BND (Sacramento River at 
Bend Bridge). Data from these nodes was summarized the same way as described in Table L.3-1 
above. The output of the model is the predicted JPI for each year. 

L.3.4 Results 

L.3.4.1 BA 
When grouped by water year type, the highest mean predicted JPI value occurred under NAA 
during above normal water years (4,166,909) and the lowest mean predicted JPI value occurred 
during above critical water years (1,084,428) under Alt2 With TUCP Without VA (Figure L.3-3 
and Table L.3-5). 

The highest predicted JPI value across all years occurred in 2005 under Alt2 Without TUCP 
Delta VA (8,901,808). The lowest JPI values occurred in 2014 under Alt2 With TUCP Without 
VA (202,083, Figure L.3-4 and Table L.3-6). 
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Figure L.3-3. Observed JPI values from 2002 to 2022 and predicted values under BA 
scenarios by water year type. 

Table L.3-5. JPI observed and mean predicted values under BA scenarios from 2002 to 
2022 by water year type. 

Water  
Year Type 

Observed 
JPI NAA EXP1 EXP3 

Alt2 
wTUCP 
woVA 

Alt2 
woTUCP 
woVA 

Alt2 
woTUCP 
DeltaVA 

Alt2 
woTUCP 
AIIVA 

Above Normal 6,652,583 4,166,909 938,222 1,767,935 4,064,905 4,064,717 4,080,225 3,927,614 

Below Normal 3,743,451 2,903,175 898,043 1,595,262 2,792,077 2,792,278 2,814,852 2,761,983 

Critical 799,585 1,413,014 221,555 1,326,659 1,084,428 1,250,915 1,215,117 1,163,048 

Dry 3,820,593 1,903,154 211,001 1,055,059 1,750,491 1,751,186 1,788,049 1,675,850 

Wet 4,776,674 2,874,042 1,311,624 1,344,053 2,864,663 2,864,578 2,864,874 2,864,352 
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Figure L.3-4. Observed JPI values from 2002 to 2022 and predicted values under BA 
scenarios.
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Table L.3-6. JPI observed and predicted values under BA scenarios from 2002 to 2021. 

Year 
Water  
Year Type NAA EXP1 EXP3 

Alt2wTUCP 
woVA  

Alt2woTUCP 
woVA  

Alt2woTUCP 
DeltaVA  

Alt2woTUCP 
AllVA  

2002 Below Normal 3,959,028 818,025 2,060,195 3,933,154 3,932,752 4,009,544 3,892,211 

2003 Above Normal 5,284,368 1,608,204 2,573,376 5,272,227 5,271,497 5,290,793 5,116,249 

2004 Above Normal 3,049,451 268,240 962,493 2,857,582 2,857,937 2,869,657 2,738,979 

2005 Below Normal 8,564,866 5,299,183 6,715,426 8,755,564 8,755,512 8,901,808 8,825,628 

2006 Wet 6,559,160 3,658,496 3,453,628 6,558,389 6,558,386 6,558,363 6,558,368 

2007 Below Normal 1,899,415 5,198 479,164 1,775,579 1,776,101 1,735,995 1,700,450 

2008 Dry 1,173,361 3,191 533,031 960,493 960,380 982,025 872,844 

2009 Dry 1,361,517 366,449 888,745 1,262,236 1,261,794 1,263,268 1,215,084 

2010 Below Normal 1,071,971 135,590 412,359 1,035,097 1,035,100 1,035,352 1,000,173 

2011 Wet 1,506,881 203,111 327,792 1,504,149 1,504,147 1,504,190 1,504,206 

2012 Below Normal 2,225,736 23,626 636,031 1,992,567 1,994,803 2,008,791 1,917,065 

2013 Dry 2,935,972 146,488 1,347,491 2,700,273 2,702,173 2,784,318 2,641,898 

2014 Critical 436,339 2,333 490,476 202,083 311,402 301,173 298,193 

2015 Critical 743,471 9 681,739 810,739 802,812 781,320 823,065 

2016 Below Normal 1,069,988 1,720 358,538 854,396 853,181 849,861 835,011 

2017 Wet 665,046 63,850 115,317 656,478 656,325 656,552 655,308 

2018 Below Normal 1,531,224 2,956 505,122 1,198,182 1,198,497 1,162,616 1,163,344 

2019 Wet 2,765,082 1,321,039 1,479,475 2,739,635 2,739,453 2,740,390 2,739,526 

2020 Dry 2,141,768 327,876 1,450,968 2,078,964 2,080,396 2,122,583 1,973,576 

2021 Critical 3,059,232 662,322 2,807,763 2,240,463 2,638,532 2,562,858 2,367,887 
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L.3.4.2 EIS 
Under Alt2 without TUCP Delta VA, the mean predicted JPI is generally lower than NAA, 
ranging from 5.09% higher in 2015 to 30.98% lower in 2014 (Table L.3-7, Figure L.3-5). 

Under Alt2 with TUCP without VA, the mean predicted JPI is generally lower than NAA, 
ranging from 9.05% higher in 2015 to 53.69% lower in 2014. 

Under Alt2 without TUCP without VA, the mean predicted JPI is generally lower than NAA, 
ranging from 7.98% higher in 2015 to 28.63% lower in 2014. 

Under Alt2 without TUCP Systemwide VA, the mean predicted JPI is generally lower than NAA, 
ranging from 10.71% higher in 2015 to 31.66% lower in 2014. 

Under Alt1, the mean predicted JPI is generally higher than NAA, ranging from 45.23% higher 
in 2014 to 8.31% lower in 2003. 

Under Alt3, the mean predicted JPI is generally higher than NAA, ranging from 39.30% higher 
in 2017 to 49.26% lower in 2018. 

Under Alt4, the mean predicted JPI is generally higher than NAA, ranging from 13.64% higher 
in 2010 to 21.49% lower in 2014. 
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Figure L.3-5. Observed JPI values from 2002 to 2022 and predicted values under EIS 
scenarios.
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Table L.3-7. JPI observed and predicted values under EIS scenarios from 2002 to 2021 

Year NAA Alt1 
Alt2wTUCP 
woVA  

Alt2woTUCP 
woVA  

Alt2woTUCP 
DeltaVA  

Alt2woTUCP 
AllVA  Alt3 Alt4 

2002 3959028 4086932 (3.23%) 3933154 (-0.65%) 3932752 (-0.66%) 4009544 (1.28%) 3892211 (-1.69%) 3936134 (-0.58%) 4072709 (2.87%) 

2003 5284368 4845104 (-8.31%) 5272227 (-0.23%) 5271497 (-0.24%) 5290793 (0.12%) 5116249 (-3.18%) 4685515 (-11.33%) 5493992 (3.97%) 

2004 3049451 2905759 (-4.71%) 2857582 (-6.29%) 2857937 (-6.28%) 2869657 (-5.9%) 2738979 (-10.18%) 2772694 (-9.08%) 3057315 (0.26%) 

2005 8564866 9604401 (12.14%) 8755564 (2.23%) 8755512 (2.23%) 8901808 (3.93%) 8825628 (3.04%) 9864235 (15.17%) 9366119 (9.36%) 

2006 6559160 6874387 (4.81%) 6558389 (-0.01%) 6558386 (-0.01%) 6558363 (-0.01%) 6558368 (-0.01%) 6871631 (4.76%) 6873311 (4.79%) 

2007 1899415 1956000 (2.98%) 1775579 (-6.52%) 1776101 (-6.49%) 1735995 (-8.6%) 1700450 (-10.48%) 1622190 (-14.6%) 1863487 (-1.89%) 

2008 1173361 1266288 (7.92%) 960493 (-18.14%) 960380 (-18.15%) 982025 (-16.31%) 872844 (-25.61%) 1392213 (18.65%) 1039029 (-11.45%) 

2009 1361517 1496967 (9.95%) 1262236 (-7.29%) 1261794 (-7.32%) 1263268 (-7.22%) 1215084 (-10.76%) 1740692 (27.85%) 1422792 (4.5%) 

2010 1071971 1252800 (16.87%) 1035097 (-3.44%) 1035100 (-3.44%) 1035352 (-3.42%) 1000173 (-6.7%) 1234426 (15.15%) 1218187 (13.64%) 

2011 1506881 1681186 (11.57%) 1504149 (-0.18%) 1504147 (-0.18%) 1504190 (-0.18%) 1504206 (-0.18%) 1447668 (-3.93%) 1666679 (10.6%) 

2012 2225736 2429712 (9.16%) 1992567 (-10.48%) 1994803 (-10.38%) 2008791 (-9.75%) 1917065 (-13.87%) 1949139 (-12.43%) 2052579 (-7.78%) 

2013 2935972 2938987 (0.1%) 2700273 (-8.03%) 2702173 (-7.96%) 2784318 (-5.17%) 2641898 (-10.02%) 2713940 (-7.56%) 2822549 (-3.86%) 

2014 436339 633705 (45.23%) 202083 (-53.69%) 311402 (-28.63%) 301173 (-30.98%) 298193 (-31.66%) 351365 (-19.47%) 342554 (-21.49%) 

2015 743471 751760 (1.11%) 810739 (9.05%) 802812 (7.98%) 781320 (5.09%) 823065 (10.71%) 718351 (-3.38%) 621098 (-16.46%) 

2016 1069988 993376 (-7.16%) 854396 (-20.15%) 853181 (-20.26%) 849861 (-20.57%) 835011 (-21.96%) 1408894 (31.67%) 1167253 (9.09%) 

2017 665046 728054 (9.47%) 656478 (-1.29%) 656325 (-1.31%) 656552 (-1.28%) 655308 (-1.46%) 926411 (39.3%) 743498 (11.8%) 

2018 1531224 1595583 (4.2%) 1198182 (-21.75%) 1198497 (-21.73%) 1162616 (-24.07%) 1163344 (-24.03%) 827462 (-45.96%) 1543158 (0.78%) 

2019 2765082 2958158 (6.98%) 2739635 (-0.92%) 2739453 (-0.93%) 2740390 (-0.89%) 2739526 (-0.92%) 3091360 (11.8%) 2956996 (6.94%) 

2020 2141768 2281827 (6.54%) 2078964 (-2.93%) 2080396 (-2.87%) 2122583 (-0.9%) 1973576 (-7.85%) 2439425 (13.9%) 2244587 (4.8%) 

2021 3059232 3474810 (13.58%) 2240463 (-26.76%) 2638532 (-13.75%) 2562858 (-16.23%) 2367887 (-22.6%) 2867744 (-6.26%) 2526556 (-17.41%) 
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L.3.6 Supplemental Materials 

L.3.6.1 Lasso modeling 
Justification for using Lasso modeling for variable selection prior to BIC-based model selection 

Compared to Repeated BIC, LASSO models: 

• Handles multicollinearity 

• Perform well when the number of predictors exceeds the sample size or when strong 
correlations exist among predictors. 

• Creates quantitative measures of variable importance. Easy to interpret or extend to other 
models. 

• Repeatable. Output does not depend on variable names or order they were entered. 

• No data dredging. Stepwise selection is prone to overfitting with small data sets. Does not 
need to be adjusted for multiple tests (Bonferroni corrections). 

L.3.6.2 Predictive plots for competing models (1,2,4, and 7) identified in the 
model selection process based on BIC values. 

Below are predictive plots for the four competing models identified using BIC (Models 1, 2, 4, 
and 7) (Figures L.3-6 through L.3-9). It should be noted that when using information theoretic 
methods there is little support for selecting a single model among those that found to be 
competing with ∆ BIC values and model weights. In this case, model averaging is recommended 
to integrate the information available from all the competing models. Thus, it would not be 
appropriate to interpret one competing model to the exclusion of the others. 
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Figure L.3-6. Predictive plot for competing models identified using BIC (Model 1)
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Figure L.3-7. Predictive plot for competing models identified using BIC (Model 2)



 L.3-19 

 

 

Figure L.3-8. Predictive plot for competing models identified using BIC (Model 4)



 L.3-20 

 

 

Figure L.3-9. Predictive plot for competing models identified using BIC (Model 7) 
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