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Appendix 28A Climate Change 

1 Introduction 

This document summarizes the development of the 2035 CT boundary conditions for the CalSim 

II model. For more details regarding the development of the 2035 CT boundary conditions, 

please review the Final Environmental Impact Report for Long-Term Operation of the California 

State Water Project (SWP LTO FEIR), Appendix F: Part 2: Attachment 1 Climate Change 

Projections Development (DWR, 2019). 

2 Historical Observed Meteorological Data 

Livneh et al. (2013) daily historical meteorology data at 1/16th degree (~6 km) (~3.75 miles) 

spatial resolution over the period 1915 through 2011 was used to develop historical VIC 

simulation and future climate change scenarios based on quantile mapping approach. These 

historical data were adjusted based on PRISM data (Daly et al., 1994) to correct biases found in 

the pre-1950 period. These datasets have already been reviewed under the Sacramento – San 

Joaquin River Basins Study, Central Valley Flood Protection Plan (CVFPP) 2017 Update, and 

Water Storage Investment Program (WSIP). 

3 Future Climate Change Scenario 

The climate change scenario centered around 2035 (2020-2049) was developed with the 

ensemble informed climate change scenarios method, using the 20 Coupled Model 

Intercomparison Project 5 (CMIP5) global climate model projections. With the ensemble 

informed climate change scenarios method, historical temperature and precipitation were 

adjusted with quantile mapping based on the selected global climate model projections to 

represent future conditions. 

These projections were downscaled using the localized constructed analog (LOCA) method at 

1/16th degree (approximately 6 kilometers [km], or approximately 3.75 miles) spatial resolution 

(Pierce et al., 2014). The LOCA method is a statistical scheme that uses future climate 

projections combined with historical analog events to produce daily downscaled precipitation, 

and maximum and minimum temperature time series data. Further details on the LOCA 

downscaling can be found in WSIP Technical Reference Document Appendix A (CWC, 2017).  

The 20 CMIP5 global climate projections were selected by the California Department of Water 

Resources (DWR) Climate Change Technical Advisory Group (CCTAG) as the most appropriate 

projections for California water resources evaluation and planning (DWR CCTAG, 2015). The 

climate model projections were generated with two emission scenarios, one optimistic 
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(Representative Concentration Pathway [RCP] 4.5) and one pessimistic (RCP 8.5), identified by 

the IPCC for the Fifth Assessment Report (AR5) (IPCC, 2013). 

More details regarding the global climate model projections, predicted changes to temperature, 

and predicted changes to precipitation are provided in SWP LTO FEIR, Appendix F: Part 2: 

Attachment 1 Climate Change Projections Development (DWR, 2019). 

4 VIC Model Simulations 

Historical and projected surface runoff and baseflow at 1/16th degree (approximately 6 km, or 

3.75 miles) were generated by inputting historical and projected meteorological data into the VIC 

model. The VIC Model (Liang et al., 1994, 1996; Nijssen et al., 1997) simulates land-surface-

atmosphere exchanges of moisture and energy at each model grid cell. The VIC Model 

incorporates spatially distributed parameters describing topography, soils, land use, and 

vegetation classes.  

VIC simulated surface runoff and baseflow were used to produce routed streamflows at several 

locations in the Sacramento and San Joaquin River Basin. VIC model and routing model network 

are consistent with modeling conducted in the WSIP. Further details on the VIC model and 

routing model can be found in WSIP Technical Reference Document Appendix A (CWC, 2017). 

5 Sea Level Rise 

For a climate centered around year 2035, 15 cm of sea level rise (SLR) was assumed. 15 cm 

reflects median projected SLR at 2035 according to the latest Ocean Protection Council Sea-

Level Rise Guidance released in 2018 (OPC, 2018). 

6 CalSim II Inputs Preparation 

Climate and sea-level change are incorporated into CalSim-II in two ways: changes to the input 

hydrology, and changes to the flow-salinity relationship in the Delta due to SLR.  

The following methods were used to calculate projected CalSim-II inflow data: 

• For larger and smaller watersheds, simulated changes in streamflows (simulated future 

streamflows divided by historical simulated streamflows) were applied to the CalSim-II 

inflows. These fractional changes were first applied for every month of the 82-year 

period consistent with the VIC Model simulated patterns. A second order correction was 

then applied to confirm that the annual shifts in runoff at each location were consistent 

with that generated from the VIC Model. Similarly, fractional changes were also used to 

simulate change in precipitation and temperature as needed for forecasting and 

operational assumptions used in CalSim-II.  
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• For larger watersheds where streamflows are heavily impaired, a process was 

implemented by calculating historical impairment based on observed data and adding that 

impairment back onto the VIC Model simulated flows at a location upstream of the 

impairment. This approach is consistent with the approach used in the WSIP CalSim-II 

modeling under future conditions. 

• Water year types and other indices used in system operation decisions by CalSim II were 

regenerated using adjusted flows, precipitation, or temperature as needed in their 

respective methods. 

• SLR effects on the flow-salinity response in CalSim-II were incorporated by a separate 

Artificial Neural Network (ANN) for future climate condition. 

• SLR effects were used in the regression equations to estimate the flow split between the 

Sacramento River and Georgiana Slough at times when the Delta Cross Channel (DCC) 

is open or closed. 

 

More details regarding the development of the CalSim II inputs are provided in SWP LTO FEIR, 

Appendix F: Part 2: Attachment 1 Climate Change Projections Development (DWR, 2019) 

7 Summary of Future Climate Hydrology 

Projected change in the Eight River Index (8RI), Sacramento Valley Four Rivers Index (SAC-4), 

San Juaquin Valley Four Rivers Index (SJR-4), and runoff at each of the eight major rivers is 

provided in Figure 1. 8RI runoff change is dominated by the increase in runoff in the Sacramento 

Valley. Increase to runoff in the Sacramento Valley is greater than increases to runoff in the San 

Joaquin Valley. Runoff increases in all major basins except for the San Joaquin River basin, 

where runoff decreases by about 1 percent. Generally, in reviewing basins from North to South, 

relative change to runoff decreases, as evapotranspiration losses overcome precipitation 

increases. 

Long-term average monthly flows of SAC-4 and SJR-4 are presented in Figures 2 and 3, 

respectively. As compared to historical runoff, 2035 CT SAC-4 peak runoff increases and shifts 

from March to February. Winter runoff, when the peak occurs, increases by 13 percent in March 

to 24 percent in January. Increase in runoff and shift in peak timing are a result of increased 

precipitation and temperature, respectively. Total annual SAC-4 runoff increases by roughly 3 

percent, as noted in Figure 1. 2035 CT SJR-4 peak runoff volume and timing remain similar to 

historical runoff. However, Winter runoff increases by up to 43 percent (in January) and Summer 

runoff decreases by up to 49 percent (in July). Increased Winter temperatures lead to a higher 

portion of precipitation that directly results in runoff, as opposed to snowpack. Similarly, with 

decreased snowpack, runoff during the Summer, when the majority of runoff is snowmelt, 

decreases. The seasonal changes result in a total annual SJR-4 runoff increase of 1 percent 

(Figure 1). 

To summarize operational response to 2035 CT climate conditions, figures of Delta inflow, 

outflow and exports are provided (Figures 4 through 6). In these figures, CalSim II results from 
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the No Action Alternative at historical and future conditions are provided. NAA 011221 

represents historical conditions; 2035 CT NAA 020921 represents 2035 CT conditions. As a 

result of increased runoff during the Winter months (January through March), Delta inflow 

increases by 14 to 18 percent. Then, Delta inflow decreases by 5 to 18 percent in the Spring and 

Summer (May through September) due to reduced runoff. With these seasonal changes, annual 

average Delta inflow increases by 4 percent. With the exception of Summer months, Delta 

outflow patterns are consistent with Delta inflow patterns (Figure 5). To compensate for the 

reduction of Delta inflow, exports are reduced by 10 percent during the Summer (Figure 6). 

These Summer reductions lead to a 5 percent, or 350 TAF, decrease in annual exports. In sum, at 

2035 CT climate conditions, reservoirs are more likely subject to spill during the winter, reduced 

runoff decreases reservoir storage and release in the Spring and Summer. Exports are reduced to 

compensate for reduced reservoir releases in the Spring and Summer.  

 

 
Figure 1. Relative Change in Average Annual Flow 
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Figure 2. Monthly Pattern of Sacramento Valley Runoff 

 
Figure 3. Monthly Pattern of San Joaquin Valley Runoff 
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Figure 4. Monthly Pattern of Total Delta Inflow 

 
Figure 5. Monthly Pattern of Total Delta Outflow 
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Figure 6. Monthly Pattern of Total Delta Exports 
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