

CVP Water Temperature Modeling Platform

Modeling Technical Committee (MTC)
Output Subgroup Meeting

June 1, 2023; 2:00 p.m. – 4:00 p.m.

Welcome!!

- We are looking forward to a productive meeting.
- Virtual meetings can be challenging and frustrating, especially with a large groups - please be patient and flexible. If you are having technical difficulties, please chat with Sarah Hamilton, or Sarah.Hamilton@stantec.com
- Chat Panel will be used for participants to provide comments and queue up questions. Use Raise Hand functions in Q&A session.
- Feedbacks on meeting logistic and suggestions: Yung-Hsin Sun, PhD, PE; sun.yunghsin@sunziconsulting.com

MTC Output Subgroup: Objectives

- Build common understanding and receive feedback on WTMP planned features for output.
- Explore options for future enhancements.

MTC Output Subgroup: Agenda

2:00 p.m. Welcome and Meeting Logistics

2:05 p.m. Subgroup Orientation

Objectives

Recap Output Mechanism in WTMP and Options of Information

2:15 p.m. Introduction: Applications in WTMP that Generate Output (as planned)

2:30 p.m. Discussion: Useful Output per Application – What Do They Look Like?

Model Calibration/Validation

Seasonal Temperature Plan and Implementation

Long-term Planning Studies

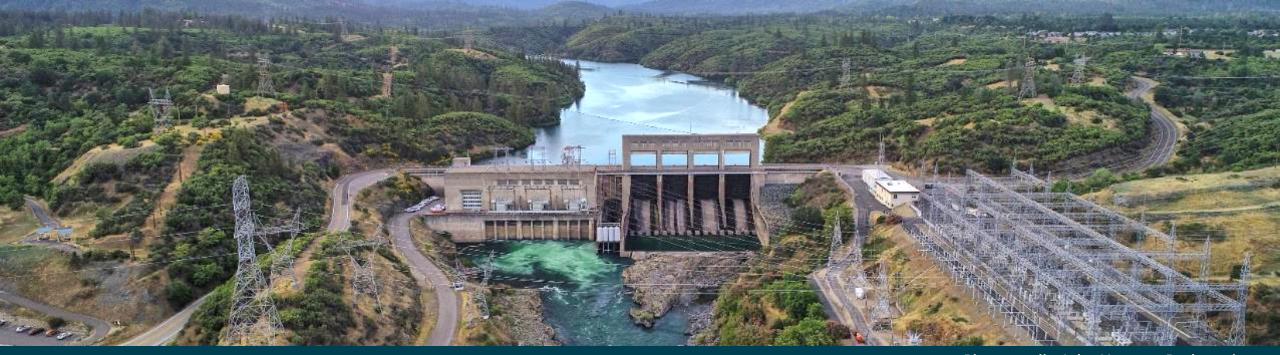
3:20 p.m. Discussion: Output Concepts for Future Expanded Use of WTMP

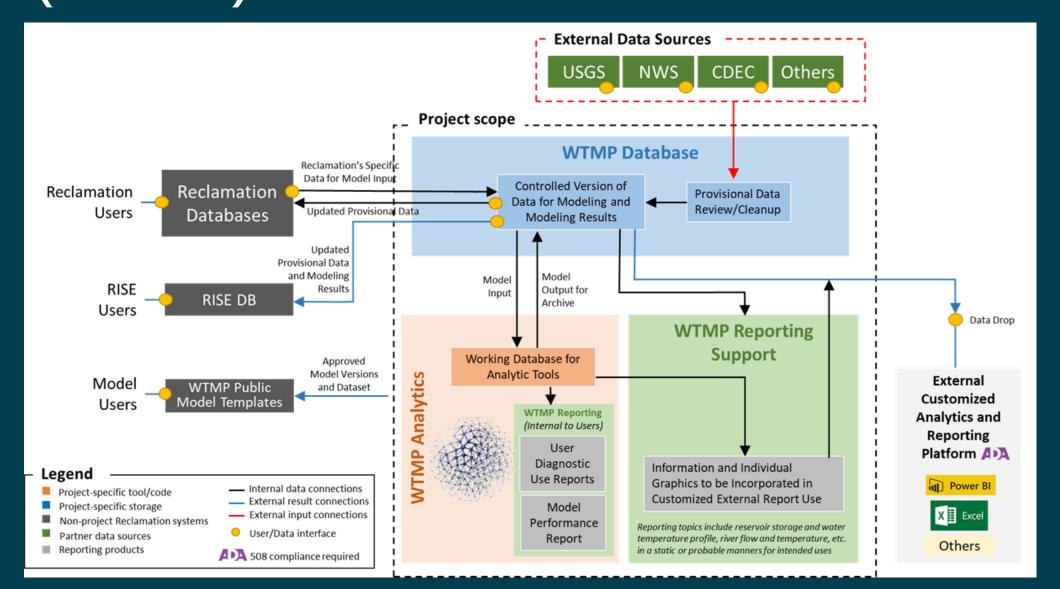
Concepts for Implemented WTMP Applications

Concepts for Potential Future Implemented WTMP Applications

3:50 p.m. Next Steps

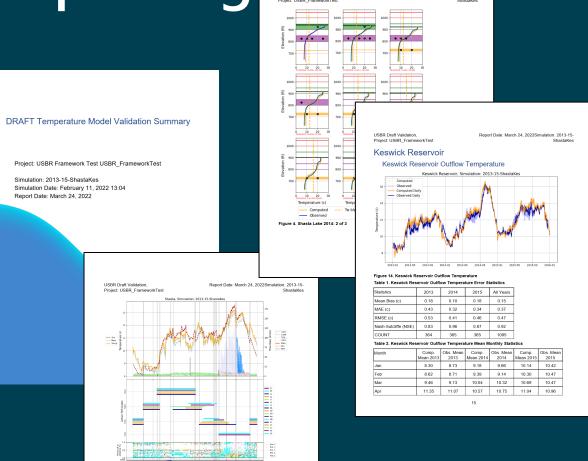
4:00 p.m. Adjourn




Photo credit: John Hannon, Reclamation

Recap: Output Mechanism in WTMP and Options

John DeGeorge, PhD, PE; RMA


Water Temperature Modeling Platform (WTMP)

Purpose of Automatic Reporting

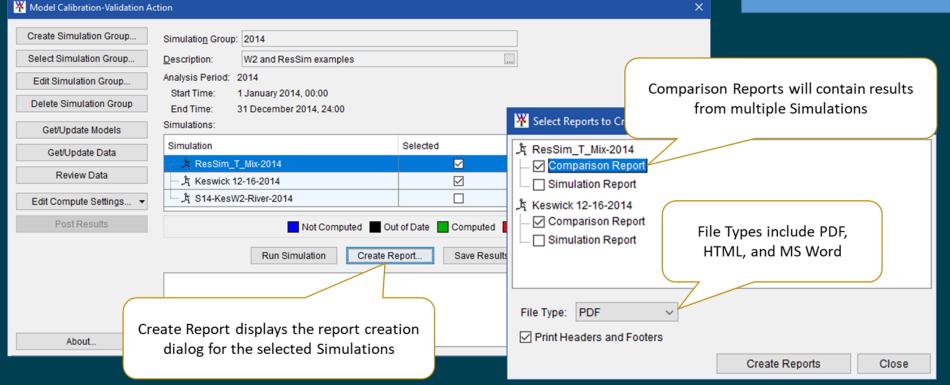
- Rapid creation of key output tables and graphics to facilitate results review by modelers
- Creation of tables and graphics that could be incorporated in other reporting and presentation products

Design Requirements

- Simple report creation action for WTMP users ("one-click")
- Report configuration files editable by advanced users
- Configuration files should be modular and re-usable ("mix and match")
- Visual presentation of tables and plots should be easily controlled
- Support similar result presentation from different models

Automatic Reporting Implementation

• Every defined report is scripted and accessible through WTMP user interface.

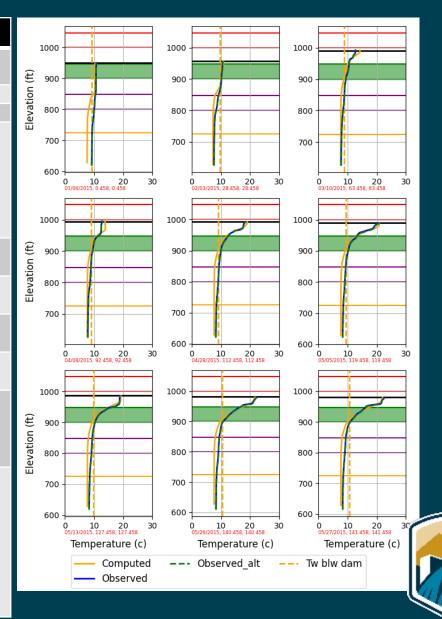

Comparison report (CSV)

Model type, Model Alternative, Chapter Template

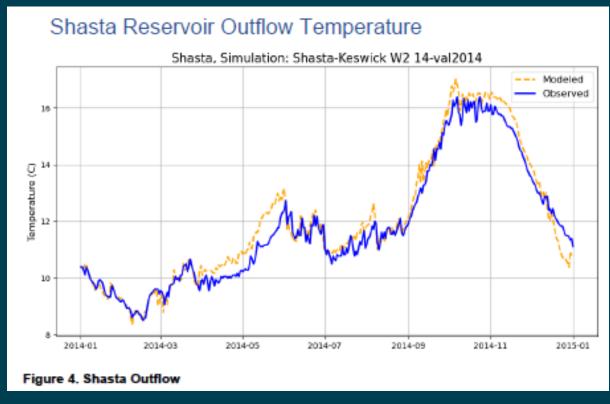
ResSim, WQ_dsTrib3, Shasta_ResSim.XML

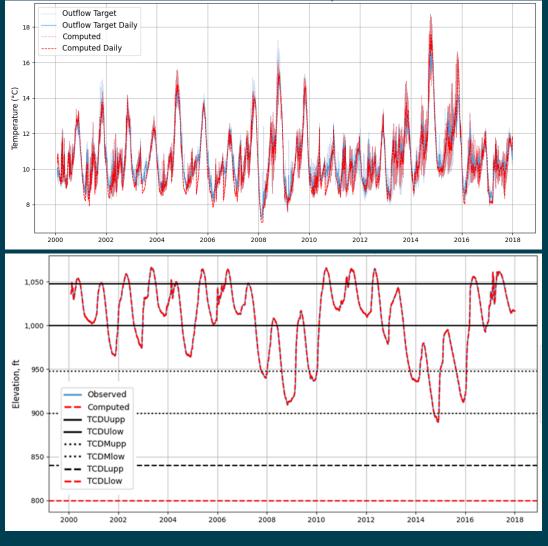
ResSim, WQ_dsTrib3, Keswick_ResSim.XML

ResSim, WQ_dsTrib3, UpperSac_ResSim.XML



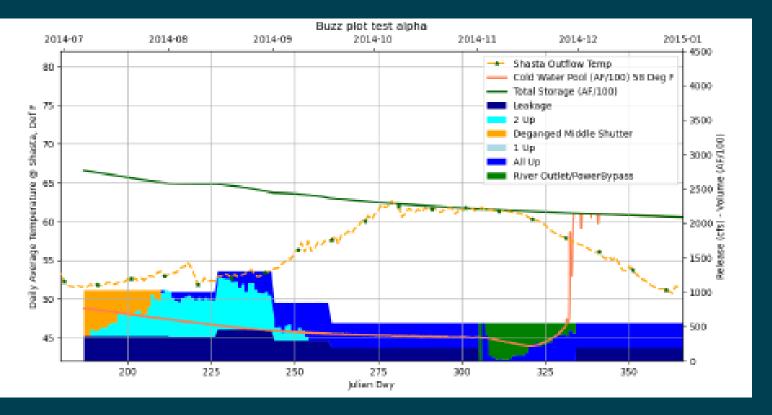
Automatic Reporting Implementation (Cont.)


- Configuration files (XML format) (i.e., the script)
 - Separated by sections Report table of contents will show headings for chapters and sections
 - Sections contain one or more report objects
 - Syntax references implemented models and observed data
- Currently available report objects
 - Text Blocks with String substitution; Profile Plots; Time Series Plots; Error Statistics Table; Monthly Statistics Table; Single Statistics Table; Profile Statistics Table; Contour Plots; Reservoir Contour Plots; Buzz Plots (American River Basin only); and Shasta Outlet Operations Plot

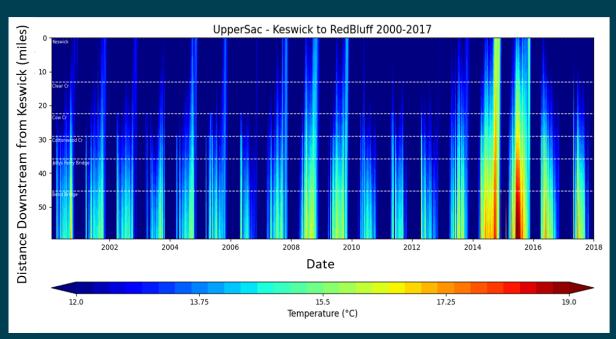

Profile Plot Object, subset of documentation

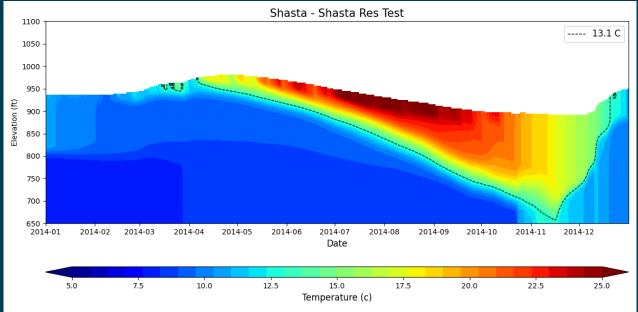
Name	Description	Example
Description	Name of the figure in the Table of Figures and figure name	<pre><description>Shasta Lake w tribs %%year%%</description></pre> /Description>
Xlabel Ylabel	Label for X axis of plots at the bottom of a given page of plots Label for Y axis of plots at the left side of a given page of plots	<xlabel>Temperature (C)</xlabel> <ylabel>Elevation (ft)</ylabel>
SplitbyYear	Boolean value. If True, separates plots by year. Each year will have its own counter (ex 1 of 3) and be denoted in the table of figures. When a new year starts in the plots, a new plot page will be added, instead of continuing the current plot page in a new panel, even if the max amount of panels per page isn't reached. Default: True	<splitbyyear>False</splitbyyear>
Parameter	Specifies the parameter of data for the plot series. Used to set units flags and grab correct data from model results.	<parameter>Temperature</parameter>
ProfilesPerRo w	Determines the number of plot panels per row per page Default: 3	<profilesperrow>3</profilesperrow>
RowsPerPage	Determines the number of rows of plots per page Default: 3	<rowsperpage>3</rowsperpage>
Gridlines	Boolean to set gridlines on all Profile Plots. Default: True	<gridlines>True</gridlines>
UseDepth	Boolean field to determine if profile plots use depths or elevations. Depths start at 0 and increase positively further down the plot.	<usedepth>False</usedepth>
	Elevations use the water surface elevation Default: False	<usedepth>True</usedepth>
DatesSource	Determines the dates of the Profile Plots. Can either be set to a defined lines <flag> value (See Line Flags) or a list of calendar dates or Julian dates. If the defined line flag is used, each available date in the dataset (currently only works for Observed data). If a list of dates is to be used, datessource must include a set of subitems of <date>. If left blank, a regular interval of dates is selected using the start and end times of the model run. Default: Observed</date></flag>	<pre><datessource>Observed</datessource></pre>

Example Time Series Plot Objects



Example Complex Plot Objects


Shasta Operations Plot



Example Contour Plot Objects

Example Table Objects

Shasta Outflow Error
 Statistics Table

Statistics	2014	All Years
Mean Bias (deg C)	0.23	0.23
MEA (deg C)	0.37	0.37
RMSE (deg C)	0.47	0.47
Nash-Sutcliffe (NSE)	0.95	0.95
COUNT	365	365

 Shasta Outflow Temperature NSE, invalid under .65 Statistics Table

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2013	0.97	0.27	0.13	0.57	0.86	-	-	0.98	0.98	0.97	0.89	0.80
2014	0.92	0.49	0.56	0.72	0.91	0.96	0.98	0.97	0.96	0.92	0.53	0.28
2015	-0.02	-0.30	0.48	0.83	0.95	0.96	0.98	0.97	0.96	0.86	0.33	0.54
All	0.86	0.22	0.50	0.79	0.93	0.96	0.98	0.97	0.97	0.91	0.67	0.66


 Shasta Outflow Mean Monthly Statistics Table

Month	Comp. Mean 2014	Obs. Mean 2014			
Jan	9.71	9.77			
Feb	9.00	9.03			
Mar	9.92	9.91			
Apr	10.46	9.99			
May	11.98	11.13			

 Shasta Lake with Tributaries in 2013 Profile Statistics Table

Statistics	08Jan2013	05Feb2013	12Mar2013	03Apr2013	08May2013	20May2013
Mean Bias (deg C)	0.56	0.59	0.76	0.80	0.89	0.82
MEA (deg C)	0.76	1.08	0.97	0.87	1.01	0.94
RMSE (deg C)	0.92	1.21	1.10	1.04	1.16	1.14
Nash-Sutcliffe (NSE)	0.22	-0.26	0.29	0.67	0.85	0.92

Introduction: Applications in WTMP that Generate Output (as planned)

Yung-Hsin Sun, PhD, PE; Sunzi Consulting LLC John DeGeorge, PhD, PE; RMA

Calibration/Validation

- A significant amount of output figures and tables were incorporated in appendices for the draft Model Development TM
- Design focusing on modeler's needs for review and documentation



Technical Memorandum

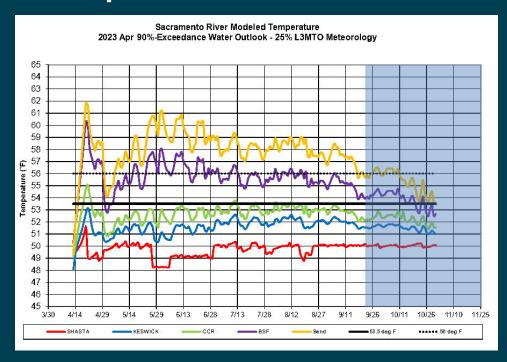
Water Temperature Modeling Platform: Model Development, Calibration, Validation, and Sensitivity Analysis (DRAFT)

Central Valley Project Water Temperature Modeling Platform

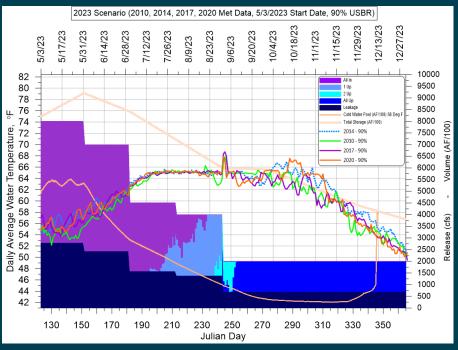
California-Great Basin Region

U.S. Department of the Interior

April 2023


Seasonal Water Temperature Planning

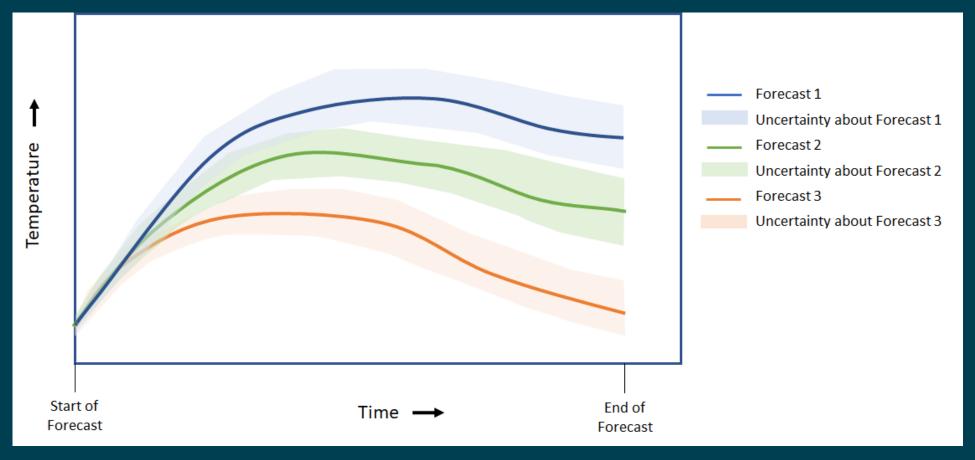
- Focus on relevant information typically included in the meeting package
 - Repeatable template that can be used throughout the season, showing records in the past and forecast in the future.
 - Realized conditions in the past of the current season provide useful context for future actions, including decisions and events of significant effects on water temperature management in the remaining season.
 - The process is a progressive planning process with forecast and correction, and a sequential decision process where the future decisions are subject to the constraints of previous ones.
 - Incorporate forecast uncertainty
 - Selective year scenarios (as in ARG package)
 - Quantifiable uncertainty (work in progress)
 - Necessary tables as identified



Seasonal Water Temperature Planning, Examples

Example from the SRTTG Package

Example from the ARG Package



Is consistent information from different systems important?

Seasonal Water Temperature Planning, Forecasting Example

Conceptual Error Band Chart (something we are working on)

Seasonal Water Temperature Planning, Hindcast

- End-of-Season Hindcast
 - The hindcast exercise is to inspire lessons learned for improved management.
 - Context is required to be useful.
 - Will the report be different than what we have planned?

Long-term Planning Studies

- A long-term planning study is different than a seasonal planning study is that it uses CalSim data but not forecast data. It also conducts a seasonal planning study for each simulated year (i.e., 100 years in the latest CalSim 3 in preparation).
 - Seasonal planning output can be leveraged for yearly information from a long-term planning studies. However, the aggregated information and statistics of the entire simulation period may be more important.
 - Work-in-progress with the planning team.
 - Output similar to those from CalSim runs?
 - Something more?

Long-term Planning Studies Example

 Example of using XL for matching display of information of a typical CalSim study review format used by modelers (i.e., an online review tool rather than a report)

Long-term Planning Studies

• Example of an old automatic reporting format from DWR's Oroville Facilities Relicensing Program (circa 2006)

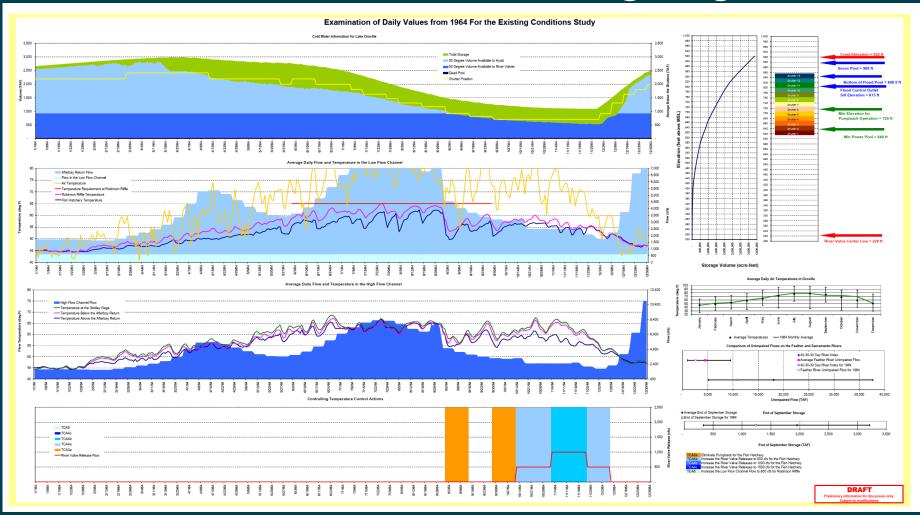


Photo credit: John Hannon, Reclamation

Discussion

Yung-Hsin Sun, PhD, PE; Sunzi Consulting LLC

Discussion: Useful Output per Application – What Do They Look Like?

Discussion: Output Concepts for Future Expanded Use of WTMP

Photo credit: John Hannon, Reclamation

Next Steps

Randi Field, CVO Yung-Hsin Sun, PhD, PE, Sunzi Consulting LLC

WTMP Next Steps

- Complete the planned implementation for the current project.
- Separately, future development considerations and plan formulation.

Upcoming MTC and Topics

- MTC 09 Meeting: July 6, 2023; 1:00 p.m. 4:00 p.m.
- Upcoming topics:
 - Model uncertainty
 - WTMP output and visualization
 - Other topics, as needed
- You have the registration link already in the Agenda do it today.

Information Sharing and Contacts

- Key WTMP team members
 - Randi Field, RField@usbr.gov
 - Mike Deas, Mike.Deas@watercourseinc.com
 - John DeGeorge, jfdegeorge@rmanet.com
 - Craig Addley, Craig.Addley@stantec.com
 - Jeff Schuyler, Eyasco, Inc. jeff@eyasco.com
 - Yung-Hsin Sun, sun.yunghsin@sunziconsulting.com
- Project Information:
 - Contract: mppublicaffairs@usbr.gov
 - Website link https://www.usbr.gov/mp/bdo/cvp-wtmp.html

