Lower Santa Cruz River Basin Study:

Demand Matrix Project Team Meeting #6

Eve Halper, Natural Resources Specialist Bureau of Reclamation Stakeholder Advisors Meeting April 24, 2017

Lower Santa Cruz River (LSCR) Basin Study Summary

- Addresses the impacts of changing climate, population and other factors on water use through 2060
- Focuses on spatial distribution of water resources in the Tucson basin (Tucson Active Management Area)
- Includes analysis of environment (riparian areas)
- Employs a scenario approach to explore range of futures (with and without adaptation)

ECLAMATIO

- Uses climate projections as input to groundwater and surface water models
- Incorporates Input from Public Stakeholders

Tucson Basin Water Level Changes

1950 - 2000

LSCR Basin Study Objectives

1) Identify Where Physical Water Resources are Needed to Mitigate Supply-Demand Imbalances

2) Develop Strategies to Improve Water Reliability for Municipal, Industrial, Tribal, Agricultural and Environmental Sectors

RECLAMATION

2000 - 2014

Public Involvement: Key Part of Process

Scenarios: plausible futures, based on consistent assumptions

Scenarios Focus on Risk

Supply and Demand

Climate Driving Forces (Precipitation, Temperature)

CAP Deliveries	Municipal
Local Ground and Surface Water	Industrial
Recycled Water	Agricultural
Stormwater	Environmental (<i>Riparian ET</i>)

Socio-Economic Driving Forces (Demographics, Economics, Technological, Regulatory)

Socio-Economic Forces - CAP Service Area Model

CAP Service Area Model (CAP:SAM)

- All Major Water Using Entities
 - 80 Municipal Providers
 - 23 Irrigation Districts
 - 12 Tribes and Districts
 - 20+ other user categories (CAGRD, AWBA, Industrial users, etc.)
- 16 Water Supply Types
 - Includes Surface Water, Effluent, CAP, LTSC, Groundwater, Recovered Water, etc.
 - Incorporates shortage scenarios from Colorado River Simulation model (CRSS)

- Models municipal, agricultural and industrial demands
- Demand estimated by water provider
- Matches each demand with supplies in order of preference

Basin Study Next Steps

- Demand Matrix Input from Stakeholder Advisors-April 24
- Run Climate Projections through Hydrologic Models
- Select Best and Worst Case Climate / Hydrology Scenarios (with Public Input)
- Select Full Set of Scenarios (Supply, Demand, Climate) without Adaptation
- Run CAP:SAM and input to TAMA Groundwater Model for each scenario

LAMATIO

• Assess Risks to Reliability under each Scenario