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DYNAMIC PROPERTIES OF MASS CONCRETE
OBTAINED FROM DAM CORES

I ntroduction

The dynamic properties of concrete are an important consideration in the analysis and review of
the safety of structures such as concrete dams. Concrete tests can be designed to predict the
behavior of a structure under various static and dynamic loading conditions. In laboratory tests,
different dynamic conditions are modeled by varying the strain rate at which thetest is
performed. Thus, the strain rate of the tests is key to the interpretation of results.

Considerable work has been performed in the area of dynamic properties and much of the work
has been summarized as a state-of -the-art paper by Bischoff and Perry, 1991.> Strain rates and
their conceptual equivalent situation are tabulated below (Bischoff and Perry, 1991):

Condition Strain rate: (in/in per second)
Creep 108 to 10°®

Static 10° to 10*

Earthquake 102 to 10°

Hard Impact 10° to 10*

Blast 10°to 10°

The U.S. Bureau of Reclamation is particularly concerned with the performance of its dams when
subject to earthquake loads. For approximately fifteen years, Reclamation’s laboratory core test
programs typically include dynamic tests performed at strain rates corresponding to seismic
loads.

This paper summarizes the results of a Reclamation research project designed to provide a broad
database of the behavior of mass concrete from existing dams under dynamic loading conditions
that ssimulate earthquake loadings. Laboratory tests performed on cores at both traditional, static
loading conditions (strain rates of 10 to 10*) and dynamic loading conditions (strain rates of
10?) are compared. Dynamic and static measurements of compressive strength, modulus of
elasticity, compressive failure strain, Poisson’sratio and splitting tensile strength are
summarized. In some cases, the core size or moisture condition among similar samples was
varied to determine if either of these parameters affected test results. Linear, elastic assumptions
that are typically used for finite element analyses of structural deformation and structural failure
arereviewed for these data.



Data from previous and current test programs performed at the U.S. Bureau of Reclamation
Materials Engineering and Research Laboratory, Denver, Colorado are provided . Results from
Reclamation’s past test programs that include similar dynamic and static compression and/or
split tension data are summarized. An additional 103 cores from two dams were tested under
dynamic and static compression and split tension loading conditions.

Test Program

The dams that provided test data for this study are summarized in Table 1. The 1998 “current”
test data consists of data from Warm Springs Dam and Roosevelt Dam. Results were obtained
from inventoried core and were tested May - September, 1998 at the Denver |aboratory
specifically for thisstudy. The remaining data, hereby referred to as the “historical data’, were
extracted from previous test programs that were conducted at Reclamation’s Denver laboratory.

All testsincluded in the historical data were performed according to current laboratory standards
and with current testing apparatus. This constitutes data obtained from cylindrical core drilled
from dams that were tested according to current laboratory standards, and at the strain rates
defined for seismic (dynamic) and static compression and split tension tests. These data were
obtained from files of the U.S. Bureau of Reclamation Laboratory and papers published by
Gaeto, 1984,% and Peabody and Travers, 1986.34

The test data reflect the great variability among Reclamation’s mass concrete mixture
proportions. The structures were placed using mass concrete construction techniques, that
include nominal maximum aggregate sizesof 3in. or larger. Concrete mixes reflect the state-
of-the-art concrete technology at the time of construction and were partly controlled by local
conditions. Aggregate were obtained locally and reflect the geological history of the area. Such
characteristics make mass concrete dependant on both the time period and location at which the
mix was made. Details regarding the design and construction of each structure considered in
this paper are also provided in Table 1.

Sample Preparation

All specimens considered in this study, with the exception of the static compression and static
splitting tensile strength tests for Folsom, Pine Flat, and Englebright Dams, were prepared and
tested at the Bureau of Reclamation’s Materials Engineering and Research Laboratory, Denver,
Colorado. Coreswere typically obtained by Reclamation’s regional drill crews, packed on site,
and shipped to the Denver facility. Test specimens were cut to length by a diamond impregnated
saw to obtain alength to diameter ratio of 2.0 whenever possible.

The static compression and split tension test results for Folsom, Pine Flat, and Englebright Dams

were supplied by the U.S. Army Corps of Engineers (COE) when the dynamic tests were
performed by Reclamation, for the purpose of comparison to Reclamation’s dynamic test results.
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Historical Data

Reclamation typically tests concrete in a saturated state. Upon extraction from the dam, drilled
cores are sealed in plastic to best maintain their in-situ moisture content. At the Denver
laboratory, cores are maintained either wrapped in saturated cloth and covered with plastic, or in
a constant climate-controlled 100% humidity room prior to testing. The drilling and testing
programs are usually completed within afew months.

All core samples from the historical data had a six-inch diameter, except the core from
Monticello Dam, which had aten-inch diameter.

Current Data

Thetest program for this study was designed not only to provide the specified comparisons of
dynamic and static material properties, but also to study the effects of saturation and core size on
these results. The Roosevelt and Warm Springs Dam cores used in this study had been stored
and air-dried for approximately two to five years.

To study the effects of saturation, the 1998 samples from Roosevelt and Warm Springs Dams
were tested at an air-dried and a surface-saturated moisture content. Since the core had been
exposed for several years, air-dried samples were tested in the moisture condition at which they
were found. Saturated specimens were submerged in lime water for at least 40 hours prior to
testing, as suggested in the American Society for Testing and Materials procedure C 42.°> The
density of each sample was measured before and after the 7-day saturation to determine the
absorption of the concretes.

To study the effects of core diameter size, both six-inch and 12-inch diameter cores from
Roosevelt Dam weretested. All Warm Springs Dam cores measured six inches in diameter.

Sample Populations

Several test populations were developed from the 103 test specimens to isolate the moisture
content and the core size parameters. The six-inch diameter Warm Springs core was evenly
divided to test at both the air-dried (Group A) and the saturated (Group B) moisture state. Eight
twelve-inch diameter samples were available from the Roosevelt core. Eight six-inch diameter
saturated cores (Group 1(a)) and eight six-inch diameter air-dried cores (Group 1(b))were tested
and compared to the eight twelve-inch diameter cores that were also tested air-dried (Group 2).
All twenty-four specimens were extracted from asimilar location in the dam. Each test group
included dynamic and static compression and dynamic and static splitting tension tests.

To further isolate the effect of saturation on the remaining six-inch diameter Roosevelt Dam

core, the population was evenly divided to perform additional dynamic and static compression
and split tension tests at both the in-situ, air-dried and saturated condition.
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In summary, the 1998 test specimens were grouped as follows:

No. of Moisture
Group Name Dam Name Specimens  Diameter Condition
Group A Warm Springs 16 6in. saturated
Group B Warm Springs 14 6in. air-dried
Group 1(a@) Roosevelt 8 6in. saturated
Group 1(b)  Roosevelt 8 6in. air-dried
Group 2 Roosevelt 8 12in. air-dried
Group 3 Roosevelt 16 6in. saturated
Group 4 Roosevelt 16 6in. air-dried
Group 5 Roosevelt 9 6in. saturated
Group 6 Roosevelt 8 6in. air-dried

Tests Performed

Static compressive strength was determined according to the American Society for Testing and
Materials (ASTM) C 39 “Standard Test Method for Compressive Strength of Cylindrical
Specimens’.®> For the 6-inch diameter core, the modulus of elasticity and Poisson’s ratio were
determined using 4-inch epoxied electrical strain gages, two secured laterally and two secured
axialy, as stated in ASTM C 469 “ Standard Test Method for Modulus of Elasticity and Poisson’s
Ratio in Compression”. The 12-inch diameter core required twelve 4-inch gages, bridged in four
groups of three gages according to procedures previously described. Ultimate strain was
measured from the axial gages and strain (ue) is reported in units of 10° in/in.

Static splitting tensile strength was determined according to ASTM C 496 “ Splitting Tensile
Strength of Cylindrical Concrete Specimens’.

Dynamic tests were performed according to the ASTM procedures for the static tests with the
exception of loading rate. In the Denver laboratories, auniaxial testing machine capable of
providing failures within a strain rate of 10° and atime frame of 0.05 to 0.1 seconds was used.
The equipment uses a hydraulic ram mobilized by an oil pump.

For all tests, strain gages directly provided strain measurements, while load was measured and
converted to units of stress.

The density of the concrete was determined by dividing the weight of the specimen by the
volume displaced in water. Specific gravity was first computed from the weight of the specimen
in air divided by the specimen’ s submerged displacement. The submerged displacement was
determined by subtracting the specimen weight submerged in water from the specimen weight in
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air. Density was then calculated by multiplying the specific gravity by the density of water,
which is dependent on its temperature.

Test Results

Nature of the test results

Tables2 - 7 and Figures 1 - 5 summarize the average test results of the historical and current data
according to the arrangement of the 16 test populations. The tables provide the range, average,
and standard deviation of the data, as well as the ratio found between the average dynamic and
average static material properties. Averages are derived from the average results of each
population and are provided to summarize trends of the data. The number of tests performed for
each test program varies. The data from the Warm Springs and Roosevelt core has been divided
into several test groups to isolate particular parameters and each group is represented in the
average. Thusthe current data provided by Warm Springs and Roosevelt Dam test groups
represent nine of the 16 test populations included in the average.

The averages should not be interpreted as indicative of mass concrete. The averages should
simply be considered a guide that describes the trend of the test populations defined in Tables 2 -
7.

Current test results for the Warm Springs and Roosevelt Core are summarized according to group
Tables8 and 9. Individual test results are presented in Appendix A, Tables A-1 through A-9, for
the current data, and in Appendix B, Tables B-1 through B-34 for the historical data. All
available cumulative stress and strain Figures, used to calculate modulus of elasticity, are
provided in Appendix C, Figures C-1 through C-11. For the current data, individual stress and
strain curves are provided in Appendix D for the static compressive strength tests and Appendix
E for the dynamic compressive strength tests. Plots of lateral strain versus axial strain, used to
compute Poisson’ s ratio, are provided in Appendices F and G for the static and dynamic
compressive strength tests.

Ultimate Compressive Strength

Data for compression tests are summarized in Table 2. The average dynamic compressive
strengths of the 16 test populations are generally dlightly higher than the average static
compressive strengths.  The average dynamic to static compressive strength ratio of these results
is 1.07, with a coefficient of variation of 20 percent. Theratio rangesfrom 0.73 to 1.45. Dueto
the significant variation within the test population, the dynamic to static compressive strength
ratio for mass concrete should be determined on a case by case basis.

The dynamic to static compressive strength ratio and the average static compressive strength for
each test population in Table 2 is plotted in Figure 1. Although the ratios tend to decrease as the
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static compressive strength increases, the data is too dispersed to draw any statistical conclusions.
The coefficient of determination (r*value) isonly 0.1674. Consequently, no significant statistical
correlation was found among compressive strength and dynamic to static compressive strength
ratio.

Modulus of Elasticity

For the 15 mass concrete test populations summarized in Table 3, the dynamic moduli of
elasticity tend to be dlightly lower than the static moduli of elasticity. Although the average
dynamic to static compressive strength ratio is slightly greater than one, the average dynamic to
static modulus of elasticity ratio is 0.89, with a coefficient of variation of 17 percent.

Asillustrated in Figure 2, the ratio of dynamic to static modulus of elasticity ranges from about
0.7to 1.1 for al moduli values. Resultsindicate that the modulus of easticity issimilar at strain
rates corresponding to static and seismic loading conditions. Thus, dynamic moduli did not tend
to increase as the dynamic strength increased relative to the static compression test (Figure 3).

Stress and strain curves for data for Warm Springs, Roosevelt, Deadwood, Elephant Butte

and Monticello Dams are provided in Appendix C. A typical example of stress and strain data
from Roosevelt Dam for a static compressive strength test and a dynamic compressive strength
test isprovided in Figure 4. Thetest pair was extracted within one concrete construction lift.
The ultimate dynamic compressive strength is slightly higher than the ultimate static compressive
strength.

The curvesin Figure 4 are essentially linear and similar in slope from the origin to a stress
corresponding to approximately one-half of the ultimate static compressive strength. After this
stressis reached, the curves diverge. The slope of the static compressive strength curve becomes
non-linear, decreasing asymptotically to the failure stress. Mass concrete typically yields before
it failsin this manner at static loading rates.

At dynamic loading rates, yielding is not observed in the stress and strain data. The stress-strain
response for the dynamic test in Figure 4 is predominately linear from initial loading to failure of
the specimen. Thislinear response is representative of the dynamic test results. Under
compressive loads, the yielding phenomenawas typically eliminated from the test data when the
test strain rate was increased from the static load rate to the dynamic load rate.

The modulus of elasticity istypically calculated as either a secant or achord modulus. A secant
modulusis calculated from the origin to a defined point on the curve, usually within thirty to
sixty percent of the sample’' s ultimate strength. The chord modulus, typically used in all
Reclamation test programs and most recent data, is measured according to ASTM C 469 between
the stress and strain pairs at 50 micro strains and at 40 percent of the ultimate compressive
strength. Since the dynamic and static stress and strain curves considered in this study were
generaly linear within the boundary conditions defined for these moduli, measurements of
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secant and chord moduli would be similar.

Results for Folsom Dam were excluded from the moduli study. Results provided a dynamic to
static modulus of elasticity ratio of 2.15, which significantly deviated from the others. The value
for static modulus of elasticity was provided by the COE without any background data or
supporting calculations. Thus, the reason for this deviation could not be checked.

Failure strains

Failure strain datais provided in Table 4. For this study, failure strain is defined as the strain
measured at the ultimate compressive strength of the sample. The average dynamic to static
compressive fallure strain ratio is ightly less than one for most test populations. The average
ratio of dynamic to static failure strain of eight ratios reported in Table 4 is 0.93 with a
coefficient of variation of 12 percent. The average excludesthe ratio of 1.58 from the Roosevelt
Group 1(a) test population, which deviates drastically from the rest of the test population and is
considered an outlier.

The average ratio implies that concrete tends to be more brittle under dynamic loading
conditions. Failure strain isfurther considered in the discussion of the effects of saturation.

Poisson’sratio

Datafor Poisson’sratio are summarized in Table 5, and individual plots for the current data from
Warm Springs and Roosevelt Dams are provided in Appendices F and G. The average dynamic
to static ratio of Poisson’sratio for the 15 populations summarized in Table 5is1.09, with a
coefficient of variation of 29 percent.

For most test populations, the average static Poisson’s ratio and the average dynamic Poisson’s
ratio are dlightly higher than 0.20. Increases or decreases of Poisson’s ratio do not correlate with
changes in average compressive strength. The average Poisson’ s ratio ranges from 0.14 to 0.29
for the static compression test population, and from 0.18 to 0.44 for the dynamic compression
test population.

Splitting Tensile Strength

Data for splitting tensile strength are shown in Table 6. For 15 mass concrete test populations,
the average ratio of dynamic to static splitting tensile strength is 1.44, with a coefficient of
variation of 15 percent.

Figure 5 indicates that the dynamic to static splitting tensile strength ratio tended to slightly

decrease as the static compressive strength increased. However, the dispersion of results at

higher strengths in Figure 5 makes it difficult to correlate a relationship between dynamic to
static splitting tensile strength ratio and increasing splitting tensile strength. The linear
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regression produced by a computer function provides a coefficient of determination (r> value) of
only 0.0714. The variation in data suggests that site specific data should be used to evaluate
critical structures.

Ratios of splitting tensile strength to compressive strength for both the static and dynamic test
populations are provided in Table 7. The average ratio of static splitting tensile strength to static
compressive strength is 0.10, with a standard deviation of 0.03. The ratio of dynamic splitting
tensile strength to dynamic compressive strength is 0.13, with a standard deviation 0.04.

Parameters Studied

Submergence of core prior to testing

Pairs of similar Warm Springs 1998 core populations and Roosevelt core populations (Groups
1(a) and 1(b), Groups 3 and 4, and Groups 5 and 6) that were tested at an air-dried and a
saturated condition are represented in summary Tables 2 through 5.

In general, surface saturation of specimens tended to decrease the static and dynamic
compressive strengths and increase the static and dynamic split tensile strengths.

Almost al dynamic to static failure strain ratios were greater for the saturated cores than for the
air-dried cores. However, too little data providing failure strain at different surface moisture
contentsis available to draw conclusions from these results.

For these variations in materia properties, the corresponding affect of the saturation process on
the density of the samples was extremely small. The average density of all 30 specimens from
Warm Springs Dam prior to soaking was 128.8 |b/in®. For the sixteen saturated samples,
submergence did not change the density. The average density of 68 samples from Roosevelt
Dam was 147.0 Ib/in®, and the density of the 26 saturated samples increased about one percent
after soaking.

Although the effects of submergence on core samples tended to vary among test populations, the
saturation process does seem to effect the elastic properties of the test specimens. These
changes were observed even though increases in the density due to soaking were extremely small
To most accurately predict the material properties of a structure, mass concrete samples should
be maintained and tested as close as possible to an in-situ moisture state.

Coresize
Core from Roosevelt Dam was tested and compared for diameters of 6 inches (Group 1(b)) and

12 inches (Group 2). The larger core generally provides lower strengths and strains for both
static and dynamic compression and split tensile loading, but higher moduli of elasticity. ASTM
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specifies that core diameters measure at least twice the length of the maximum aggregate size.
Since the maximum aggregate size at Roosevelt dam appears to be approximately 5 inches, the
12-inch diameter core test results are considered more representative.

Conclusions

1. Almost all dynamic compression tests provide an increase in strength compared to the static
compressive strength.  For 16 test populations, the average dynamic to static compressive
strength ratio is 1.07, with a coefficient of variation of 20 percent. Thisratio does not depend
upon the magnitude of the dynamic and static compressive strengths. The variability of the
results indicate that compressive strength measurements should be determined on a case by case
basis.

2. Almost all dynamic splitting tension tests provided a significant increase in strength compared
to static splitting tensile strength values.  The average dynamic to static splitting tensile strength
ratio was 1.44, with a coefficient of variation of 15 percent. Thisratio does not depend upon the
magnitude of the dynamic and static compressive strengths. The variability of the results
indicate that splitting tensile strength measurements should be determined on a case by case
basis.

3. The dynamic compression tests provide a decrease in moduli of elasticity compared to the
static moduli of elasticity. The average ratio of dynamic to static modulus of elasticity (using the
ASTM standard for calculation) was 0.89 with a coefficient of variation of 17 percent.
Consequently, the average dynamic moduli did not tend to increase as the dynamic strengths
increased.

4. For air-dried test specimens, failure strains are generally smaller for dynamic tests, indicating
that the materials are more brittle under dynamic loading conditions.

5. Saturation tended to decrease the static and dynamic compression strengths and increase the
static and dynamic splitting tensile strengths, and did not significantly change the density of the
sample.

6. Larger diameter core generaly yielded lower strength and strain values and higher moduli
values.

7. The concrete tendsto yield before failing under static, but not dynamic, load rates. Dynamic
tests provide stress-strain curves which are generally linear in nature from the origin to failure.
The stress-strain curves of the static compression tend to begin as linear and then decrease in
dope and flatten as they approach failure.
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