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Soil Structure Interaction of Spillway Walls
Adjacent to Embankments

Soil Structure Interaction

Introduction

An extremely important aspect of the analyses of an embankment dam with a
gated concrete spillway is the interaction of soil with the spillway walls during a
seismic event. If the soil load becomes too great, the concrete spillway retaining
wall may fail, opening up a large seepage path between the failed wall and the soil
behind it, leading to erosion of the soil and, eventually, the entire dam. This
failure mode is significant and is associated with a large loss of life. Figure 1.1
shows a similar failure that occurred at Shi-Kang Dam in Taiwan. Although the
embankment behind this failed retaining wall was not part of the main dam, if this
had been part of an actual dam, it is very probable that a large breach would have
occurred. Failure of the spillway pier, can fail the gates which is very
undesirable, but results in lower consequences because the flow though the
spillway is confined within the spillway walls and does not lead to embankment
failure.

Background

The determination of seismic soil loads on retaining walls has traditionally been
done using one of two pseudo static methods: Mononobe-Okabe or Woods.

Mononobe-Okabe extends Coulomb’s theory of static active (and passive) earth
pressures to include the effects of dynamic earth pressures on retaining walls.
The Mononobe-Okabe theory incorporates the effect of earthquakes through the
use of a constant horizontal acceleration in units of “g” acting on the soil mass
comprising Coulomb’s active wedge (or passive wedge) within the backfill. The
Mononobe-Okabe theory assumes that the wall movements are sufficient to fully
mobilize the shear resistance along this backfill wedge, as is the case for
Coulomb’s theory. To develop the dynamic active earth pressures, the wall
movements are away from the backfill, while for the dynamic passive earth
pressures, the wall movements are into the backfill.

Wood’s theory assumes that the retaining wall has a non-yielding backfill behind
it [1]. Sufficient wall movements do not occur and the shear strength of the
backfill is not fully mobilized. Wood analyzed the response of a wall retaining
non-yielding backfill to dynamic excitation assuming the soil backfill to be an
elastic material. Wood’s simplified solutions showed that a static elastic solution
for a uniform 1.0g horizontal acceleration gave very accurate results on the wall
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under harmonic excitation of frequency f when dynamic amplification effects
were negligible. This occurs when f/fsis less than about 0.5 where f; = Vy/4H is
the cyclic frequency of the first shear mode of the backfill considered as a semi-
infinite layer of depth H. Shaking table tests using dry sand backfill confirmed
the applicability of Wood’s simplified solutions when the predominant frequency
of shaking is significantly less than the fundamental frequency of the backfill.
There have been no similar studies for saturated cohesive soils. The measured
forces exceeded by a factor of 2 to 3 those predicted by the Mononobe-Okabe
theory. Wood’s simplified solutions do not account for:

a) amplified accelerations from base to crest of the wall

b) vertical or 2-component horizontal accelerations

c) increase of modulus with depth in the backfill

d) the out-of-phase response along the height of the wall between the
wall and soil at any given time

e) the effect of the reduced soil stiffness with the level of shaking
induced in both the soil backfill and soil foundation

Also, both of the above mentioned methods do not take into account the nonlinear
behavior of soil during a seismic event, any three dimensional (3-D) effects
around the spillway area, seismic motions in 3 orthogonal directions, and the
complex nature of wave propagation produced with ground motion.

Therefore, a more rigorous approach is required to evaluate seismic loads on
concrete spillways. This Research Report will propose the use of the LSDYNA
[2] finite element code in order to achieve this. This code has various soil
material models available for use:

Material Model 16 incorporates the Mohr-Coulomb yield surface with a
Tresca limit (response mode 1). This model, combined with an equation-
of-state, can be used to model soil structure interaction. Input parameters
include density, shear modulus, Poisson’s ratio, tension cutoff, cohesion,
pressure hardening coefficients, cohesion and pressure hardening
coefficient at failure. Also, an equation-of-state that relates volumetric
strain to pressure must be supplied.

Material Model 25 is an inviscid two invariant geologic cap model. The
yield surface is defined by a failure envelope, a cap surface and a tension
cutoff. The advantages of this model over other classical pressure-
dependent plasticity models is the ability to control the amount of
dilatency produced under shear loading and its ability to model plastic
compaction. Input parameters include those obtained by fitting a curve
through the failure data taken from a set of triaxial compression tests and
parameters to define the cap hardening law, void fraction of an
uncompressed sample and slope of the initial loading curve in hydrostatic
compression.
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Material Model 193 has a modified Drucker-Prager yield surface enabling
the shape of the surface to be distorted into a more realistic definition for
soils. Input parameters include density, shear modulus, Poisson’s ratio,
friction angle, cohesion and dilation angle. The shear modulus, friction
angle, cohesion and dilation angle can also be varied with depth of soil.

These nonlinear soil material models use the concepts and principles from the
theory of plasticity. Total stresses are utilized where pore pressures are not
explicitly taken into account. Total stress analysis is appropriate for cohesionless
soils that are dry or very coarse and for most cohesive soils.

For purposes of modeling core material against spillway walls, the soil above the
phreatic surface can be modeled as dry, cohesionless material with a Mohr-
Coulomb yield surface and an appropriate equation of state (relating volumetric
strain versus pressure). The soil below the phreatic surface can be modeled as a
cohesive material with no phi angle along with an equation of state that relates the
volumetric strain versus pressure with a slope that is 3 to 4 times that of the bulk
modulus of water.

Validation

It is very important to validate any finite element results with experimental data.
Professor Nicholas Sitar at the Department of Civil and Environmental
Engineering, University of California, Berkeley measured accelerations and
moments of earth retaining walls during seismic excitation in a centrifuge
experiment as part of Linda Al Atik’s doctoral thesis [3]. The results of this work
will be used to benchmark the performance of LSDYNA.

Centrifuge Experiment

The Berkeley centrifuge experiment consisted of two aluminum structures
retaining Nevada Sand. The experiment configuration is shown in figure 2.1.

The left aluminum structure is composed of stiff walls with a moment connection
with the base while the right structure is composed of flexible walls with a similar
base. The dimensions are shown in millimeters.

LSDYNA will be used to model the Berkeley centrifuge experiment (in prototype
scale) and will focus on comparing the accelerations in the soil and walls and the
moments at the bottom of the inner stiff and flexible walls. The accelerations for
this comparison are measured near the top of the soil and at the top of each wall.
Figure 2.2 shows the location of the SG2 strain gage used to determine the wall
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moments for this comparison. The input acceleration record is shown in figure
2.3. The Nevada sand properties are given in fig 2.4.

Applying the seismic acceleration record in this experiment, the time histories of
accelerations in the soil and at the walls are obtained as shown in figure 2.5.
Experimental and computed (from a finite element model created as part the
Berkeley centrifuge research) results are shown. The moment time history at the
bottom of the stiff wall is shown in figure 2.6, while the moment time history at
the bottom of the flexible wall is shown in figure 2.7. The units are Ib-inches and
the moments are total moments for the entire width of the prototype wall, which is
1100 inches wide. The solid lines represent the experimental results while the
dashes lines represent results from the Berkeley finite element model.

LSDYNA Finite Element Model

An LSDYNA finite element model of the Berkeley prototype walls was created
(following the modeling details used in the Berkeley report) and is shown in
figure 2.8. This is a 3-D model with one element through the thickness and
restraints in the out-of-page direction (Y axis in this case) in order to represent 2-
D conditions. The walls are created from shell elements with properties as
follows:

Flexible Wall Stiff Wall Base
Thickness 10 inches 18 inches 32.2 inches
Young’s 10,000,000 Ib/in® | 10,000,000 Ib/in® | 10,000,000 Ib/in®
Modulus
Density 414 b/fe 267 Ib/ft® 280 Ib/ft>
Wall Height 223 inches 223 inches
Base Length 444 inches

These properties are the same as those used in the Berkeley experiment.

As discussed previously, LSDYNA offers various soil material models. The two
most common are material model 16 (Mohr-Coulomb yield surface model) and
material model 25 (geologic cap model). Material model 25 will be used first in
the comparison with the Berkeley results.

Material Model 25

Material model 25 input parameters are shown as follows (these are final values
used after some adjustment in order to best match the Berkeley results). The first
two input line are:
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*MAT_GEOLOGIC_CAP_MODEL
25,0.000158,16700,7681,3.00,0.2700,3.00,0.085

Where :
Mass density = 0.000158 slugs
Bulk Modulus = 16,700 Ib/in®
Shear Modulus = 7,681 Ib/in?
Alpha =3.00
Theta = 0.2700
Gamma = 3.00
Beta = 0.85

These last four variables are used to define a “Mohr-Coulomb” failure surface in
the J1, (J2p) * space [2]. However, the easiest way to evaluate these variables is
to test a one element material model 25 in triaxial compression and plot the Mohr
circles for a variety of confining pressures and associated deviatoric pressures.
This type of test was done using these variables and is shown in figure 2.9. This
is a reasonable failure surface for Nevada sand.

The next input line defines the cap and its movement with plastic strain [2]:

2.0,0.00005,0.150,13.00,0.000,0.000

Where :
The shape of the cap = 2.00
Slope of the initial loading curve
in hydrostatic compression = 0.00005
The void fraction of an uncompressed sample = 0.15
Pressure at which the cap intersects the “Mohr-Coulomb” failure
surface in the J1, (J,0) * space = 13.00 Ib/in?

The next input line defines some plotting options and a tension cutoff:

3,2,1,0

Where :
Plot control variable = 3 (see LSDYNA users manual [2])
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Formulation flag = 2 (see LSDYNA users manual [2])
Vectorization flag =1 (see LSDYNA users manual [2])
Tension cutoff = 0 Ib/in?

The hourglass control was chosen to be the standard Flanagan-Belytschko
stiffness form with exact volume integration with all default parameters [2].

In LS-DYNA damping can be included through several mechanisms. There is
inherent damping, which is the result of nonlinearities in the material models,
contact surfaces, non-reflecting boundaries and so on. A user can also input
damping in the form of Rayleigh damping (both mass and stiffness) and
frequency range damping. Damping included by the user is termed “artificial
damping.” Artificial damping is included if the finite element analysis shows
signs of significant (or unrealistic) under-damped structural behavior. This under-
damped behavior was observed in early runs of this model, therefore, a mass
damping factor of 20.0 was applied to the soil and a mass damping factor of 3.0
was applied to the walls.

The acceleration time histories at the top of the soil, at the top of the stiff wall and
at the top of the flexible wall are shown in figure 2.10 and can be compared with
the Berkeley results in figure 2.5. The time histories of the moments at the
bottom of the flexible and stiff walls are shown in figures 2.11 and 2.12
respectively and can be compared to the Berkeley results in figures 2.6 and 2.7
respectively. As can be seen, the results are comparable. The accelerations are
greater in the LSDYNA model, however, not significantly. The moment time
histories compare well to the Berkeley results in terms of peak locations and
shape of the curves. The LSDYNA analysis under predicts the static moment,
peak values and residual increase in static post-earthquake moment for the
flexible wall. However, for the stiff wall, LSDYNA over predicts the peak values
during the seismic event and the static post-earthquake moment, while predicting
static moment fairly well. Note there are significant differences between the
experimental and computed time histories in the Berkeley results for the stiff
wall.

It is of interest to compare these results to Mononobe-Okabe and Woods pseudo-
static solutions. Figure 2.13 shows the Mononobe-Okabe solution for the flexible
wall resulting in a pseudo-static moment of 11.8 x 10’ Ib-in which can be
compared to a peak in figure 2.11 of 3.0 x 10’ Ib-in. Figure 2.14 shows the
Wood’s solution for the stiff wall resulting in a pseudostatic moment of 24.4 x
107 Ib-in which can be compared to a peak in figure 2.12 of over 8.0 x 10 Ib-in.
This illustrates the conservative nature of the pseudo-static solutions.

Material Model 16

Material model 16 input parameters are shown as follows (these are final values
used after some adjustment in order to best match the Berkeley results). The first
four input lines are:
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*MAT_PSEUDO_TENSOR
16,0.000158,7681,0.3
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
0.0,0.0,0.0,0.0,0.0,0.0

Where :
Mass density = 0.000158 slugs
Shear Modulus = 7,681 Ib/in?
Poisson’s ratio = 0.3

The second and third lines are set to zero in order to invoke the Mohr-Coulomb
yield surface with a Tresca limit geologic model. The first value in the second
line is the tension cutoff that can be used if desired. The next four lines are
coordinate input pairs to describe the Mohr-Coulomb failure surface. Ten
coordinate pairs are allowed, five per line. In this example only five were used to
describe the failure surface, so the second and fourth lines are blank, but required
as input. This surface is shown in figure 2.9, (having a phi angle of 35 degrees).
Note that the input for this material model calls for deviator stress and not shear
stress on the Y-axis (as shown in figure 2.9). Recall that deviator stress is simply
(2 x shear stress).

0.0,1.00,10.00,70.00,740.00
(BLANK LINE)
0.0,20.00,30.00,100.00,1000.00
(BLANK LINE)

The next ten lines define the equation-of-state (EOS) for this material. The
second line is set so that the initial internal energy = 0.0 and the initial relative
volume = 1.0. The compaction EOS is used with tabulated input. This tabulated
input in terms of coordinate pairs is input on lines three through six. Ten
coordinate pairs are allowed, five per line. In this example only two pairs were
used, so the fourth and sixth lines are blank, but required as input. The EOS is in
terms of pressure versus volumetric strain. Pressure is positive in compression.
Volumetric strain is given by the natural log of the relative volume and is negative
in compression. Relative volume is the ratio of the current volume to the initial
volume. Lines seven and eight are reserved for tabulated input in terms of
coordinate pairs for temperature contribution (not used here). Finally, lines nine
and ten are for tabulated input in terms of coordinate pairs for the unload bulk
modulus.
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*EOS_TABULATED_COMPACT ION
16,0.0,0.0,1.0
0.0,-0.0008

(BLANK LINE)

0.0,10.00

(BLANK LINE)

(BLANK LINE)

(BLANK LINE)
16700.0,16700.0

(BLANK LINE)

Hourglass control and damping are the same as described for material 25 above.

The time histories of the moments at the bottom of the flexible and stiff walls are
shown in figures 2.15 and 2.16 respectively and can be compared to the Berkeley
results in figures 2.6 and 2.7 respectively. Again, the moment time histories
compare well to the Berkeley results in terms of peak locations and shape of the
curves. LSDYNA does a better job in predicting the moment time history
response for the flexible wall in terms of peak moments and static post-earthquake
moment using this material model as compared with material model 25.
LSDYNA again over predicts the peaks for the stiff wall, however, does a better
job in predicting the static post-earthquake moment, as compared with material
model 25.

Parametric Studies Using the LSDYNA Finite Element
Model

Some parametric studies using the LSDYNA model are presented here. Material
25 will be used for these studies.

Reverse Polarity of Seismic Record

It is equally probable that a structure can be excited by a seismic event that is
reversed in its polarity. Although, this was not done at Berkeley, the LSDYNA
model was run with the seismic polarity reversed. (Actually, it is not clear which
way the seismic record was applied at Berkeley.) The results are shown in figures
2.17 and 2.18 for the flexible and stiff wall respectively. Comparing with figures
2.11 and 2.12, one can see the significant differences in the shape of the response
as well as in the peak values and the static post-earthquake moment. However,
the general behavior is comparable. This illustrates the fact that seismic time
histories should be applied with the polarity reversed and the most conservative
response considered.

Varying the Input Variables

Parametric studies were made for some of the input parameters. First, the cap was
move out by increasing the pressure at which the cap intersects the “Mohr-
Coulomb” failure surface in the J1, (Jop) * space from 13.00 Ib/in’ to some large
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pressure. The results were identical to those in figures 2.11 and 2.12, indicating
that the cap was never reached in the run. Next, the last four variables are used to
define a “Mohr-Coulomb” failure surface in the J1, (J,p) * space were moved
upward in effect giving the sand some cohesion and a greater phi angle. This is
not a realistic case, however, it was of interest to see the behavior. The result was
the same shape time histories as shown in figures 2.11 and 2.12, however, the
static post-earthquake moment was the same as the static moment. This would be
expected confirming that the sand stayed in the linear range and did not touch any
failure surface.

Varying the Wall Stiffness

The wall stiffness was arbitrarily reduced by 2 times for both the stiff and the
flexible walls. The moment time histories are shown in figures 2.19 and 2.20 (in
gray) and are compared with the results using the reverse polarity seismic record
(in black). As the stiffness decreases, the loading on the wall decreases.
Statically, the load goes from an at-rest condition toward an active condition.
Post-earthquake static loads are reduced even more significantly. The shapes of
the time histories are in phase with the shapes of the time histories of the original
stiff and flexible walls.

Varying the Wall Mass

The wall mass of both the stiff and flexible walls was reduced arbitrarily by 10
times. The moment time histories are shown in figures 2.21 and 2.22 (in gray)
and are compared with the results using the reverse polarity seismic record (in
black). As can be seen, the response is reduced, as would be expected. The more
mass a wall has the more it can contribute to the total moment response during a
seismic event. The shapes of the time histories are comparable and in phase with
the originals.

3-D Finite Element Example Model

The effects of various parameters investigated in the previous section will be
demonstrated using a 3-D model of an embankment dam with a spillway
structure. Scoggins Dam was chosen for this purpose.

Model Details

General
The TrueGrid [4] mesh generator was used to create the 3-D finite element model
of the dam, the reservoir, the spillway crest structure and the surrounding
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topography. LS-DYNA was used to analyze this model. The spillway crest
structure was the focus of this analysis because it abuts to the core material of the
dam and its failure during a seismic event could damage the continuous water
barrier, resulting in a catastrophic release of the reservoir. A depiction of the
entire model with dimensions is shown in figure 3.1. Figure 3.2 shows details of
the various parts of the model. The model has 752172 nodes, 711605 brick
elements and 2929 shell elements.

Spillway Crest Structure

The spillway crest structure section modeled consists of wall panels supported by
five counterforts. Figure 3.3 shows this crest structure section between station
8+48.25 and station 9+16.15. Figure 3.4 shows the reinforcement details of the
counterforts. The spillway crest structure in the model consisted of the wall
panels modeled using linear shell elements. The counterforts were modeled using
linear beam elements attached to the shell elements. Each counterfort is
represented with 28 beam elements. The moment of inertia, cross sectional area
and density of the beam elements at any given elevation were adjusted to match
that of the existing counterforts. Figure 3.5 shows the calculations for these
values. Beam elements were also used underneath the spillway slab, connecting
counterforts on either side, in order to help increase the stiffness of the slab,
which in reality is connected to the rock (via cohesion and rock anchors as shown
in Section A-A, figure 3.3) and is very stiff.

Dam

The 3-D finite element model of the dam consists of various zoned materials as
shown on figure 3.6 using solid elements with nonlinear soil properties. These
zones were approximated in the finite element model as indicated by the colored
sections. For the material properties input into the model for each of these zones,
see Material Properties. Material 16 will be used as the material model for these
zoned materials.

Foundation

The 3-D finite element model of Scoggins Dam included the rock foundation
using linear material solid elements. To properly model the seismic motions in
the foundation, it is desirable to have at least 10 finite elements per seismic
wavelength. The critical wavelength was determined by dividing the shear wave
speed of the foundation rock (1,955 ft/s) by the assumed highest frequency of
interest in the dam (a maximum frequency of 10 Hz). For this case, the
wavelength is 195 ft, so an element size of 20 feet or less is needed. The element
size beneath the dam is 20 feet or less.

Reservoir

The reservoir behind the dam was modeled using solid elements with a fluid
equation of state. Although the water in the spillway inlet was modeled, the gates
and the interaction between the water and the gates were not modeled. This is
because the loads from the gates to the spillway walls and piers are small

10
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compared to the soil loads and concrete inertia. The reservoir was included
upstream of the dam to account for global dam-to-water interaction that might
affect displacement of the embankment dam, leading to movement of the soil in
the vicinity of the spillway.

Material Properties
The input properties used in the analyses were based on laboratory test values and
input from the geotechnical engineers.

Upstream Zones 2 and 3 (Saturated SM) Material
Shear modulus (G) = 37,800 Ib/in?

Poisson’s ratio =0.48

Density =127 Ib/ft

Bulk modulus = 938,000 Ib/in?

Phi angle = 32 degrees

Cohesion = 0.0 Ib/in?
Downstream Zones 2 and 3 (Dry SM) Material

G = 36,500 Ib/in’

Poisson’s ratio =0.35

Density =121 Ib/ft

Bulk modulus = 107,000 Ib/in?

Phi angle = 32 degrees

Cohesion = 0.0 Ib/in?
Zone 1 (Saturated SC) Material

G = 34,000 Ib/in®

Poisson’s ratio =0.48

Density =122 Ib/ft

Bulk modulus = 833,000 Ib/in

Phi angle = 26 degrees

Cohesion = 0.0 Ib/in?
Underlying Overburden (Qal) Material

G = 15,300 Ib/in®

Poisson’s ratio =0.48

Density =120 Ib/ft®

Bulk modulus = 375,000 Ib/in?

Phi angle = 0.0 degrees

Cohesion = 8.0 Ib/in?
Bedrock

Modulus of elasticity(E) = 300,000 Ib/in?

Poisson’s ratio =0.30

Density =139 Ib/ft?
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Spillway Concrete

E. = 3,600,000 Ib/in?

Poisson’s ratio =0.16

Density = 150 Ib/ft®
Loads

Static and dynamic loads were applied in LS-DYNA using load curves. Gravity
loads were applied over 1.0 second and the model was allowed to reach a steady-
state prior to application of the dynamic loads. Strong motion from the
earthquake began after a few seconds into the computer runs.

The finite element model was analyzed for a local GILR seismic event with a
50,000 year return period shown in figure 3.7. This motion was applied as 3
deconvolved orthogonal stress time histories at 0.01 second time step along a
horizontal layer of element faces at depth of about 340 feet in the foundation and
allowed to propagate up to the ground surface.

Results

The effects of the various parameters investigated for the Berkeley comparison
studies will be compared in terms of moment and shear at the base of the middle
counterfort (counterfort #3, figure 3.4). The base line case was run with all
material properties as stated above and a global 3% damping applied to the entire
model between 1.0 Hz and 10.0 Hz. An additional 10% stiffness damping was
applied to the wall counterforts to dampen any high frequency vibrations.

Base Line Time History Results

Figure 3.8 shows the moment time histories at the base of the middle counterfort.
The time history plot for element 129 (red plot) is the moment for the middle
counterfort on the embankment side wall, while the time history plot for element
274 (green plot) is the moment for the middle counterfort on the dam side wall.
Figure 3.9 shows the shear time histories at the base of the same counterforts.
The fact that the element 129 time histories are negative is just a sign convention
in LSDYNA.

Varying the Wall Mass

As with the centrifuge comparisons, the counterfort wall mass was reduced by ten
times to see the effects on the moments and shears at the base of the middle
counterfort. Figures 3.10 and 3.11 show the time histories of these moments and
shears and can be compared to figures 3.8 and 3.9, respectively. As can be seen,
the reduced mass decreases the ability of the wall to bend into the soil when it is
being accelerated in that direction. This is evident in the fact that the time
histories do not cross the Y-axis at zero (i.e. there is not sign change) during the
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seismic event. Moment and shear peaks are reduced slightly, while the shape and
frequency of the plots remain about the same. Post-earthquake static moments
and shears remain about the same.

Varying the Wall Stiffness

As with the centrifuge comparisons, the counterfort wall stiffness was changed in
order to see the effects on the moments and shears. The stiffness of the wall and
counterforts was reduced five times. Figures 3.12 and 3.13 show the time
histories of the moments and shears and can be compared to figures 3.8 and 3.9,
respectively. The moment and shear peaks are reduced. The shape of the time
history is also changed slightly. This is more evident in the moment time history
plots.

Varying the Damping

A run was made with no damping applied to the soil. Figures 3.14 and 3.15 show
the time histories of the moments and shears and can be compared to figures 3.8
and 3.9, respectively. The peak moments and shears increased slightly, however,
some of the intermediate peak values increased more significantly. Post-
earthquake static moments and shears remain about the same with some high
frequency oscillations that are less damped out.

Conclusions

Concrete spillway retaining walls in embankment dams may fail during a seismic
event, opening up a large seepage path between the failed wall and the soil behind
it, leading to erosion of the soil and, eventually, the entire dam. The
determination of seismic soil loads on these retaining walls has traditionally been
done using two pseudo static methods: Mononobe-Okabe and Woods. Because
of the criticality of this subject, a more rigorous approach is required to evaluate
seismic loads on concrete spillway walls. This Research Report proposes the use
of the LSDYNA finite element code in order to achieve this.

It is very important to validate any finite element results with experimental data.
As stated above, Professor Sitar measured accelerations and moments of earth
retaining walls during seismic excitation in a centrifuge. The results of this work
were used to benchmark the performance of LSDYNA.

Two material models, material model 16 (Mohr-Coulomb yield surface model)
and material model 25 (geologic cap model) were used to model the Berkeley
centrifuge experiment (in prototype scale) and focused on comparing the
accelerations in the soil and walls and the moments at the bottom of the inner stiff
and flexible walls.

13



Soil Structure Interaction of Spillway Walls
Adjacent to Embankments

In summary:

1) In general, LSDYNA predicted the acceleration of the soil and the
walls well.

2) Deflection of the soil must be observed in order to spot and correct
any signs of unreasonable hourglassing.

3) Using material model 25 (geologic cap model) LSDYNA under
predicts the static moment, peak values and residual increase in static
post-earthquake moment for the flexible wall. With material 16
(Mohr-Coulomb yield surface model), the peak values and residual
increase in static post-earthquake moment are more in line with
Berkeley results.

4) For the stiff wall, using material model 25, LSDYNA over predicts the
peak values during the seismic event and the static post-earthquake
moment, while predicting static moment fairly well. Using material
model 16, LSDYNA again over predicts the peaks for the stiff wall,
however, does a better job in predicting the static post-earthquake
moment.

5) Large damping, characteristic of soil materials, must be employed in
order to achieve reasonable results. This is also mentioned in the
Berkeley results, where damping of 25% and greater was used
depending on the shear strain of the soil.

Some parametric studies using LSDYNA were also done. Reducing the wall
mass and wall stiffness reduced the peak moments and post-earthquake static
moments, as would be expected. Reversing the polarity of the seismic record
produced significant differences in the shape of the response as well as in the peak
moment values and in the static post-earthquake moment. However, the general
behavior is comparable.

The effects of some of these parametric studies were also demonstrated using a 3-
D model of an embankment dam with a spillway structure. Scoggins Dam was
chosen for this purpose. The trends discussed above were also observed with this
3-D model.

The LSDYNA finite element code appears to model the behavior of soil structure
interaction on spillway walls during seismic excitation favorably. The shape and
frequency of the response of the walls are within reason as compared with
experimental results. Peak moments and post-earthquake moments also compare
favorably.

Further studies can always yield new insights. One can continue to adjust the
material input parameters in order to try and obtain more accurate results. Static
loads can be applied more rigorously through a layered approach. Updates will be
made available as this new information is obtained.
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Figure 1.1 Counterfort wall failure
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Model Parameters

Dry Medium Dense

Nevada Sand (Dr = 74%) — 3
Initial Mass Density (kg/m®) 1692 =15 /OS5 /pf
Reference Shear Modulus, G, (kPa) 5.30E+04 /____> 75 (/9 / /‘;S;r_;
Poisson's Ratio 0.3 V7 .
Reference Bulk Modulus, B, (kPa) LI5E+05. =2 /16 / 700 f S
Reference Confining Stress, P'; (kPa) 54
Peak Shear Strain 0.1
Pressure Dependent Coefficient 0.5
Shear Strain and G/Gmax pairs Based on Figure 5.2.4
Friction Angle 35 4
Phase Transformation Angle 27
Contraction Constant 0.05
Dilation Constants d;=0.6, d»=3.0
Liquefaction Induced Strain Constants 0
Number of Yield Surfaces 11
Void Ratio 0.566

Figure 2.4 Nevada Soil Properties
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Figure 2.8 LSDYNA Finite Element Model
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COMPARISON WITH BERKELY PROTOTYPE RESULTS
For flexible wall using Mononobe-Okabe
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COMPARISON WITH BERKELEY PROTOTYPE RESULTS
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by Roman Koltuniuk
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Figure 2.14 Wood's Pseudostatic Solution
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Figure 2.15 Moment Time History Near Bottom of Flexible Wall (LSDYNA Material 16)
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Figure 2.16 Moment Time History Near Bottom of Stiff Wall (LSDYNA Material 16)
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Figure 2.17 Moment Time History Near Bottom of Flexible Wall (Reverse Earthquake Motion)
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Figure 2.18 Moment Time History Near Bottom of Stiff Wall (Reverse Earthquake Motion)
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Figure 2.19 Moment Time History Near Bottom of Flexible Wall (with 1/2 E)
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Figure 2.20 Moment Time History Near Bottom of Stiff Wall (1/2 E)




Moment {lb-in)

5.00E+07/

4.00E+07

3.00E+07

2.00E+07

1.00E+G7

0.00E+00

-1.00E+07

Flexible Wall

16

Time {sec)

Figure 2.21 Moment Time History Comparing Flexible Wall and Flexible Wall with 1/10 mass
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Figure 2.22 Moment Time History Comparing Stiff Wall and Stiff Wall with 1/10 mass
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Figure 3.1 LSDYNA model
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Spillway wall properties for SCOGGINS

area per inertia per counterfort wt model model req beam wt
height counterfort counterfort area intertia
(ft) (ff%) (ft%) (Ibfin height)® () (fthe (Ib/in height)®
section 1 6 36 37 450 46.3 37.51341 90
section 2 6 448 140 560 58.03333 139.7169 200
section 3 6 53.7 358 671.25 69.4 358.1595 311.25
section 4 6.5 62.6 724 782.5 80.36667 723.7771 4225
section 5 6.5 72 1293 900 91.46667 1291.365 540
section 5 3 78.8 1846 985 99.43333 1844.988 625

Equation A = [(counterfort area)(150 Ib/ft*)]

Equation B = [(14.4ft)(2ft) + (depth)(4ft)]

Equation C = [(2ft*)(14.4ft)/(12) + (depth®)(4ft)/(12)]
Equation D = [(counterfort wt) - (14.4ft)(2ft)(150Ib/ft’)]

Equation E = [(req beam wt)/(386in/sec’)(depth)(4ft)]

Figure 3.5 Spillway wall properties
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T-shear Resultant (E+&)
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Figure 3.9 Shear at Base of Counterfort #3
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Figure 3.10 Moment at Base of Counterfort #3 (1/10 Wall Mass)
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Figure 3.11 Shear at Base of Counterfort #3 (1/10 Wall Mass)
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Figure 3.12 Moment at Base of Counterfort #3 (1/5 Wall Stiffness)
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Figure 3.13 Shear at Base of Counterfort #3 (1/5 Wall Stiffness)
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Figure 3.14 Moment at Base of Counterfort #3 (No Soil Damping)
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Figure 3.15 Shear at Base of Counterfort #3 (No Soil Damping)





