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EXECUTIVE SUMMARY

The modelling of linear wave propagation on unbounded domains is of interest in various fields of
both science and engineering. It is especially of interest in the earthquake analysis of dams because
the foundation rock and impounded water may be modelled as unbounded domains undergoing
wave motion generated by the motion of the dam.

One approach to the numerical solution of a wave equation on an unbounded domain uses a
bounded domain surrounded by an absorbing boundary or layer that absorbs waves propagating
outward from the bounded domain. A perfectly matched layer (PML) is an absorbing layer model
that absorbs, almost perfectly, all waves incident upon it. This report develops the concept of a
PML for elastic and acoustic waves using some of the insights obtained in the context of electro-
magnetics and presents PMLs for (1) a rod on elastic foundation, (2) acoustic waves in two and
three dimensions, and (3) elastic waves in two and three dimensions. Furthermore, this report
develops displacement-based finite-element implementations for the PMLs, both in the frequency-
domain and the time-domain. In particular, an efficient finite-element implementation suitable for
explicit integration is presented for the three-dimensional elastic PML, thus allowing the solution
of realistic three-dimensional problems without the overhead of solving a large system of equations
at each time step.

Numerical results are presented for the classical problem of an acoustic waveguide, which is repre-
sentative of the reservoir behind the dam, and for the classical soil-structure interaction problems
of a footing on a (i) half-space, (ii) layer on a half-space, and (iii) layer on a rigid base. These re-
sults demonstrate that PML models provide highly accurate results for a wide range of problems at
a low computational cost, and thus provide a suitable way of modelling the unbounded foundation
rock and impounded water in earthquake analysis of dams.
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1 INTRODUCTION

The modelling of linear wave propagation on unbounded domains is of interest in various fields of
both science and engineering [1, 2], ranging from simulation of earthquake ground motion [3, 4]
and soil-structure interaction [5,6], to electromagnetic waves [7], MEMS devices [8] and quantum
mechanics [9]. Such modelling is especially of interest in the design of earthquake-resistant dams
and in the evaluation of earthquake safety of existing dams, because the unbounded foundation
rock and impounded water lead to radiation damping, which is known to be significant in the
earthquake response of dams [10].

Solution of a wave equation in an unbounded domain requires the imposition of a radiation con-
dition in any unbounded direction: waves should radiate outwards from a source — a vibrating
structure, for example — toward an unbounded direction, without any spurious wave motion in the
reverse direction. Irregularities in the geometry of the domain or in the physical material often com-
pel a numerical solution of the problem, thus requiring the use of a bounded domain, along with
an artificial boundary that absorbs outgoing waves, for the modelling of the unbounded domain.
Accurate yet efficient absorbing boundaries are crucial for the solution of both time-harmonic and
transient problems: time-harmonic problems are governed by elliptic partial differential equations,
where any spurious boundedness affects the entire domain instantly, whereas absorbing boundaries
for transient analysis facilitate incorporation of non-linearity within the bounded domain.

Typical absorbing boundaries belong to one of two broad categories: 1) rigorous, non-local bound-
aries [11–14], typically formulated for time-harmonic analysis or 2) approximate, local bound-
aries [15–17], typically formulated for transient analysis. The various existing absorbing bound-
aries, local or not, are not without drawbacks.

The rigorous boundaries, such as boundary elements [11] and DtN maps [12, 13] are highly accu-
rate and thus may be used with a small bounded domain. However, the low computational cost due
to the small size of the domain may be negated by the expense due to not only the non-local nature
of such boundaries but also the computation of the boundary terms. Moreover, rigorous boundaries
are typically based on time-harmonic semi-analytical solutions, and therefore are often restricted to
linear systems with homogeneous, isotropic material and simple geometries; corresponding time-
domain formulations [18–20] may be computationally expensive and are also subjected to the same
restrictions on material and geometry.

Classical approximate absorbing boundaries [15–17, 21], although local and cheaply computed,
may require large bounded domains for satisfactory accuracy, since typically they absorb incident
waves well only over a small range of angles-of-incidence. Moreover, high-order approximate
boundaries require the use of special finite elements [22–27] for proper implementation. Various
absorbing layer models [28–30] have also been proposed as alternatives to absorbing boundaries;
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however, obtaining satisfactory performance from such models may require careful formulation
and implementation, since the change in material properties from the elastic medium to the absorb-
ing layer causes reflection of incident waves [31]. The superposition boundary [32] is cumbersome
and expensive to implement, and infinite elements [33,34] typically require problem-dependent as-
sumptions on the wave motion.

The difficulty in obtaining a sufficiently accurate, yet not-too-expensive model of the unbounded
domain directly in the time domain has led to the development of transient analysis methods that
use frequency-domain analysis as an intermediate step. One such method uses hybrid frequency–
time-domain analysis [6,35], iterating between the frequency and time domains in order to account
for nonlinearity in the bounded domain; this computationally demanding method requires careful
implementation to ensure stability. Another approach replaces the nonlinear system by an equiva-
lent linear system [36] whose stiffness and damping values are compatible with the effective strain
amplitudes in the system. A third approach [37–39] approximates the frequency-domain DtN map
of a system by a rational function and uses this approximation to obtain a time-domain system that
is temporally local. Although this approach is conceptually attractive, computation of an accurate
rational-function approximation may be expensive.

A perfectly matched layer (PML) is an absorbing layer model for linear wave equations that ab-
sorbs, almost perfectly, propagating waves of all non-tangential angles-of-incidence and of all
non-zero frequencies. The concept of a PML was first introduced by Bérenger [40] in the context
of electromagnetic waves. More significantly, Chew and Weedon [41] showed — almost imme-
diately — that the Bérenger PML equations arise from a complex-valued coordinate stretching
in the electromagnetic wave equations. Since the introduction of these seminal ideas, extensive
research has been conducted on various aspects of PMLs for electromagnetic waves; this is men-
tioned without references: a review of electromagnetics PMLs is beyond the scope of this work.
PMLs have been formulated for other linear wave equations too: the scalar wave equation or the
Helmholtz equation [42–44], the linearised Euler equations [45], the wave equation for poroelastic
media [46], and, as discussed below, to the elastodynamic wave equation.

To the author’s knowledge, the idea that PMLs could be formulated for the elastodynamic wave
equation was first introduced by Chew and Liu [47]: they used complex-valued coordinate stretch-
ing to obtain the equations governing the PML and presented a proof of the absorptive property
of the PML. Furthermore, they presented a finite-difference-time-domain (FDTD) formulation ob-
tained through field splitting or an nonphysical additive decomposition of the velocity and stress
fields. Contemporaneously, Hastings et al. [48] applied Bérenger’s original split-field formula-
tion of the electromagnetics PML directly to the P- and S-wave potentials and obtained a two-
dimensional FDTD scheme for implementing the resultant formulation. Liu [49] later applied the
coordinate stretching idea to the velocity-stress formulation of the elastodynamic equation to ob-
tain split-field PMLs for time-dependent elastic waves in cylindrical and spherical coordinates.
Zhang and Ballmann [50] and Collino and Tsogka [51] have also obtained split-field, time-domain
PMLs for the velocity-stress formulation and presented FDTD implementations. The latter have
also implemented the PML using a two-dimensional mixed finite-element scheme [52] in which the
degrees-of-freedom of each element are the velocity, the shear stress, and split-field components of
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the axial stresses. More recently, Festa and Nielsen [53] haveextended the FDTD implementation
of Collino and Tsogka to three-dimensional problems and numerically analysed the Rayleigh-wave
absorption capacity of PMLs, Komatitsch and Tromp [54] have presented a PML formulation using
field-splitting of the displacements, and implemented it using spectral elements, Marcinkovich and
Olsen [55] have presented an implementation in a three-dimensional fourth-order velocity-stress
finite-difference scheme, and Ma and Liu [56] have explored the use of PML with single-point
integration and hourglass control, among others [57–62].

A PML must be formulated with certain practical considerations in mind if it is to be widely
adopted and used outside of in-house research software. Because of its intrinsic ability to model
arbitrary and complex geometries and materials with relative ease, the finite-element method [63–
65] has become the method of choice for modelling solid mechanics and elasticity problems, and
existing software for finite-element modelling, analysis and visualisation are predominantly geared
toward the displacement-based finite-element method. It is therefore pragmatic to formulate the
PML in terms of displacement-based finite elements, because the object of interest in the analysis
is not the PML itself, but what it bounds, which may be a domain with non-linear material and
complex geometry [3, 6]; the PML merely serves to model the rest of the world [1]. Furthermore,
it is imperative that the PML allow explicit time-integration, because it is impractical to solve large
systems of equations — from e.g., three-dimensional problems — at each time-step. Most existing
formulations of PMLs for transient elastic waves [47–59, 61, 62] use explicit time-integration, but
either with a finite-difference scheme, or with a finite-difference-motivated split-field formulation
in a finite-element setting, with the split fields visible outside of the element.

The objective of this report is to develop the concept of PML for elastodynamics in a way that ul-
timately allows development of displacement-based finite-element PML with explicit integration
for three-dimensional elastic waves — thus allowing a transient finite-element model of the un-
bounded foundation rock beneath a dam — and a similar PML for acoustic waves, thus allowing
a model for the unbounded reservoir behind it. To this end, the concept of a PML is developed
for elastodynamics using some of the insights obtained in the context of electromagnetics [66–68].
The PML concept is first illustrated through the one-dimensional example of a rod on elastic foun-
dation in Chapter 2, and then extended to acoustic waves in Chapters 3 and 4 for both two- and
three-dimensional problems, and to elastic waves in Chapters 5 and 6. The PML formulations are
numerically validated by modelling relevant classical problems. The acoustic PML models are val-
idated for an acoustic waveguide, an idealisation of the impounded water in the reservoir, and the
elastic PML models are validated for the classical soil-structure interaction problems of a footing
on a (i) half-space, (ii) layer on a half-space, and (iii) layer on a rigid base.
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2 A ONE-DIMENSIONAL SYSTEM

2.1 Introduction

The ideas central to the concept of a perfectly matched layer are introduced and explored in this
chapter. These ideas are explicated in the context of the one-dimensional system of a semi-infinite
rod on elastic foundation, chosen because it allows both propagating and evanescent waves. In
addition to presenting an analytical exploration of a perfectly matched layer, this chapter also
demonstrates the finite-element implementation of the PML equations, for both time-harmonic
and transient analysis.

2.2 Semi-infinite rod on elastic foundation

Consider a semi-infinite rod on elastic foundation (Fig. 2.1), not subjected to any body forces, but
subjected to an imposed displacementu0.t/ at the left end.x D 0/, and a radiation condition
for x ! 1. This excitation causes displacementsu.x; t/, which are governed by the following
equations:

d�

dx
� kg

A
u D � Ru (2.1a)

� D E " (2.1b)

" D du

dx
(2.1c)

where� and" are the axial stress and infinitesimal strain in the rod,E is the Young’s modulus of
the rod,A its cross-sectional area,� its mass density, andkg the static stiffness per unit length of
the foundation.

If the imposed displacement is time-harmonic of the formu0.t/ D Nu0 exp.i!t/, with ! the fre-
quency of excitation, then the displacementsu are also time-harmonic of the formu.x; t/ D
Nu.x/ exp.i!t/, with Nu.x/ governed by the following equations:

dN�
dx
� kg

A
Nu D �!2� Nu (2.2a)

N� D E N" (2.2b)

N" D dNu
dx

(2.2c)

whereN� and N" are the harmonic amplitudes of� and", respectively.
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1

x
EA

kg

Figure 2.1. Homogeneous (visco-)elastic semi-infinite rod on elastic foundation.

The frequency-response of this system can be expressed in terms of a dimensionless frequency
a0 D !r0=cl , wherer0 D

p

EA=kg is a characteristic length quantity andcl D
p

E=� is the
wave velocity in the rod. Fora0 < 1, Eq. (2.2) admits rightward- and leftward-evanescent-wave
solutions of the form

Nu.x/ D exp

�

�
q

1 � a2
0

x

r0

�

and Nu.x/ D exp

�

C
q

1 � a2
0

x

r0

�

(2.3)

and admits rightward- and leftward-propagating-wave solutions of the form

Nu.x/ D exp

�

�i
q

a2
0 � 1

x

r0

�

and Nu.x/ D exp

�

Ci
q

a2
0 � 1

x

r0

�

(2.4)

for a0 > 1, with a0 D 1 the cut-off frequency of the system; the radiation condition allows only
the rightward modes in the system. The dynamic stiffness atx D 0, which is the axial force�N�A

required in the positivex-direction atx D 0 to maintainNu0 D 1, can be obtained using Eqs. (2.2b),
(2.2c) and Eqs. (2.3a), (2.4a) as

S1.a0/ D
q

1 � a2
0 (2.5)

normalised with respect toK1 D
p

EAkg, the static stiffness coefficient of the system.

The motion of a visco-elastic system, where material damping is introduced through the correspon-
dence principle [69], is also described by the above equations, but with complex-valued material
moduliE� D E.1C 2i�/ andk�

g D kg.1C 2i�/ in place of the real moduliE andkg, � being the
hysteretic damping ratio. The introduction of complex moduli results in a complex-valued wave
speedc�

l
D cl

p

1C 2i� and complex-valued dimensionless frequencya�
0 D a0=

p

1C 2i�.

The solutions for the displacement and dynamic stiffness of the semi-infinite rod are obtained by
analytically solving Eq. (2.2) on the unbounded domainŒ0;1/ using appropriate boundary condi-
tions. Numerical solution of this unbounded domain problem requires the solution of Eq. (2.2) on
a bounded domain augmented by an artificial absorbing boundary or layer; a PML is an absorbing
layer model that can be used towards this purpose.
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2.3 Perfectly matched medium

Consider a system of equations of the same form as Eq. (2.2), but withx replaced by a stretched
coordinateQx, defined as [66]

Qx WD
Z x

0

�.s/ ds (2.6)

where� is a nowhere-zero, continuous, complex-valued coordinatestretching function. By the
continuity of�,

d Qx
dx
D �.x/ (2.7)

which formally implies
d

d Qx D
1

�.x/

d

dx
(2.8)

Thus this aforementioned system of equations can be defined as

1

�.x/

dN�
dx
� kg

A
Nu D �!2� Nu (2.9a)

N� D E N" (2.9b)

N" D 1

�.x/

dNu
dx

(2.9c)

as a modification of Eq. (2.2), where the constitutive relation, Eq. (2.9b), remains the same as for
the elastic medium. A perfectly matched medium (PMM) for a rod on elastic foundation is defined
to be a medium where the field variableNu is governed by Eq. (2.9). The (visco-)elastic medium is
a special PMM, where�.x/ � 1.

Equation (2.9) is only motivated by, but defined independently of Eq. (2.8); using the latter to
derive the PMM equations from Eq. (2.2) would involve issues of complex differentiability, all of
which are neatly avoided by the independent definition of the PMM. The assumption of continuity
on � could presumably be dropped, by considering one-sided derivatives, or possibly even weak
derivatives, in Eq. (2.7); such technical issues are avoided by this convenient assumption. Note that
the assumption of a continuous� is not restrictive in the least: the stretching function is specified
a priori, and is not a physical quantity that is intrinsically discontinuous.

As is to be expected from the coordinate-stretching motivation, Eq. (2.9) admits solutions similar
in form to those in Eqs. (2.3) and (2.4) admitted by the elastic medium, but withx replaced byQx.
Evanescent-wave-type solutions are of the form

Nu.x/ D exp

�

�
q

1 � a2
0

Qx
r0

�

and Nu.x/ D exp

�

C
q

1 � a2
0

Qx
r0

�

(2.10)

for a0 < 1, and propagating-wave-type solutions are of the form

Nu.x/ D exp

�

�i
q

a2
0 � 1

Qx
r0

�

and Nu.x/ D exp

�

Ci
q

a2
0 � 1

Qx
r0

�

(2.11)
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for a0 > 1; that these are solutions of Eq. (2.9) can be shown by utilising the continuity of�

through Eq. (2.7).

A special property of these PMMs is that if two PMMs with different� are placed adjacent to each
other, with the functions� such that they match at the interface of the two media, then a wave-type
motion will pass through the interface without generating any reflected wave; this is theperfect
matchingproperty of the PMM. Without loss of generality, consider two PMMs: one is defined
on .�1; 0/ with �.x/ WD �lt.x/, and the other onŒ0;1/ with �.x/ WD �rt.x/, with the stretching
functions such that�lt.0/ D �rt.0/. These two PMMs can be considered as only one PMM but with
a continuous� defined piecewise on.�1; 0/ andŒ0;1/; thus, there is no interface, precluding the
possibility of the generation of any reflected wave. The perfect matching property holds for both
solutions in Eq. (2.11) as well as for those in Eq. (2.10), i.e., it is independent of the type of wave,
of the direction of propagation, and of the frequencya0.

Another special property of the PMMs is that for suitable choices of�, the solutions in the PMM
take the form of the corresponding elastic-medium solution but with an imposed spatial attenuation.
Consider, fora0 > 1, � defined in terms of a real-valued, continuous functionf as

�.x/ WD 1 � i
f .x=r0/
q

a2
0 � 1

(2.12)

Then
Qx
r0

D x

r0

� i
F.x=r0/
q

a2
0 � 1

(2.13)

where

F.x=r0/ WD
Z x=r0

0

f .�/ d� (2.14)

On substituting forQx from Eq. (2.13) into Eq. (2.11a), the solution is obtained as

Nu.x/ D expŒ�F.x=r0/� exp

�

�i
q

a2
0 � 1

x

r0

�

(2.15)

Thus, ifF.x=r0/ > 0, thenNu.x/ is a rightward propagating wave that is attenuated in that direction,
with the attenuation independent of the frequency due to the choice of�.x/; the functionf is
termed theattenuation function. Furthermore, fora0 < 1, consider� defined as

�.x/ WD 1C f .x=r0/
q

1 � a2
0

(2.16)

then Eq. (2.10a) is transformed to

Nu.x/ D expŒ�F.x=r0/� exp

�

�
q

1 � a2
0

x

r0

�

(2.17)
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i.e., an evanescent wave with additional attenuation.

The above choices for the stretching function are merely illustrative choices that exploit prior
knowledge of the solution. A more realistic choice for� would be in terms of two non-negative
attenuation functionsf e andf p, as

�.x/ WD
�

1C f e.x=r0/

a0

�

� i
f p.x=r0/

a0

(2.18)

This function does not assume knowledge of the frequency equation of the system, nor doesa priori
distinguish between evanescent and propagating waves. This choice for� imposes a frequency-
dependent attenuation and a phase change on the rightward propagating wave: Eq. (2.11a) is trans-
formed into

Nu.x/ D exp

"

�Fp.x=r0/

s

1 � 1

a2
0

#

exp

�

�i
q

a2
0 � 1

�

x

r0

C Fe.x=r0/

a0

��

(2.19)

whereFe andFp are appropriately-defined integrals off e andf p, respectively. Using Eq. (2.18)
imposes an attenuation and a harmonic mode on evanescent waves: Eq. (2.10a) transforms to

Nu.x/ D exp

"

�Fe.x=r0/

s

1

a2
0

� 1

#

exp

"

iFp.x=r0/

s

1

a2
0

� 1

#

exp

�

�
q

1 � a2
0

x

r0

�

(2.20)

Thus,f e imposes an attenuation on evanescent waves andf p on propagating waves.

2.4 Perfectly matched layer

These special properties of the PMM can be used to define an absorbing layer adjacent to a bounded
domain such that the layer and the domain together model the unbounded domain.

Consider the system shown in Fig. 2.2a:�BD (WD Œ0;L�) is the bounded domain governed by
Eq. (2.2), and�1

PM (WD .L;1/) is the unbounded PMM, governed by Eq. (2.9). The stretch� is
taken to be of the form in Eq. (2.12) fora0 > 1 and Eq. (2.16) fora0 < 1, with f chosen such
thatf .L=r0/ D 0. Alternatively,� can be chosen as in Eq. (2.18) for alla0, with the attenuation
functions such thatf e.L=r0/ D f p.L=r0/ D 0. Since the medium in�BD is a special PMM, with
�.x/ � 1, and since the admissible choices of attenuation functions impose that the functions�

for the two domains are matched at the interface, all waves propagating outwards from�BD are
completely absorbed into and then attenuated in�1

PM. Thus, the displacements of this system in
�BD are exactly the same as the displacements of the semi-infinite rod in�BD.

If the waves are attenuated enough in a finite distance,�1
PM can be terminated with a fixed boundary

condition at that distance without any significant reflection of the waves. Shown in Fig. 2.2b,
this bounded PMM�PM (WD .L;L C LP �) is termed the perfectly matched layer (PML). If the
wave reflection from the fixed boundary is not significant, the displacements of the entire bounded
system� (WD �BD [ �PM) in �BD should be almost the same as the displacements of the semi-
infinite rod in�BD.
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1

x

x D L

�BD

�BD

�PM � WD �BD [�PM

�1
PM

(a)

(b)

LP

Figure 2.2. (a) Perfectly matched medium; (b) perfectly matched layer, adjacent to the bounded
domain for the semi-infinite rod on elastic foundation.

2.5 Effect of fixed-end termination of the PML

The effect of domain termination in the PMM is studied analytically, first by calculating the am-
plitude of waves reflected back from the fixed boundary and then by investigating the effects ofL,
LP andf on the (normalised) dynamic stiffnessS.a0/ of � at x D 0.

The reflected-wave amplitude is calculated by considering a PMM defined onŒ0;LP � with an
imposed displacementNu.LP / D 0. The stretch is chosen as in Eq. (2.12) fora0 > 1 and as in
Eq. (2.16) fora0 < 1. A rightward propagating wave (a0 > 1) with an unit amplitude as it enters
the PML, along with a wave reflected back from the fixed boundary, can be represented as

Nu.x/ D exp

�

�i
q

a2
0 � 1

Qx
r0

�

CR exp

�

Ci
q

a2
0 � 1

Qx
r0

�

(2.21)

Imposing Nu.LP / D 0 gives
jRj D expŒ�2F.LP=r0/� (2.22)

which is the amplitude of the reflected wave as it exits the PML. A similar calculation for evanes-
cent waves using Eq. (2.16) shows thatjRj in Eq. (2.22) is the additional attenuation imposed
by the PML on the reflected evanescent wave. This reflection coefficientjRj due to the PML is
controlled by the choice of the parametersf andLP=r0, independently of the size of the bounded
domain to which the PML is adjacent. This suggests that if displacement and stress quantities
nearx D 0 for the semi-infinite elastic medium are the quantities of interest in the analysis, the
bounded domain may be restricted to the region of interest, thus lowering the computational cost,
if the parameters of the PML are chosen appropriately.
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A choice of� asin Eq. (2.18) leads to

jRj D exp

"

�2Fp.LP=r0/

s

1 � 1

a2
0

#

(2.23)

for a0 > 1, and

jRj D exp

"

�2Fe.LP=r0/

s

1

a2
0

� 1

#

exp

�

�2

q

1 � a2
0

LP

r0

�

(2.24)

for a0 < 1; an additional attenuation is imposed upon evanescent waves.

The dynamic stiffness of� at x D 0 is calculated as follows: (1) assume a solution of the
form

Nu.x/ D B1 exp

�

�
q

1 � a2
0

Qx
r0

�

CB2 exp

�

C
q

1 � a2
0

Qx
r0

�

(2.25)

in terms of constantsB1 andB2, with imaginary square roots fora0 > 1, and� in Qx defined
as

�.x/ � 1 for x 2 Œ0;L� (2.26a)

and, following Eqs. (2.16) and (2.12), in terms of a non-negative attenuation functionf as

�.x/ D

8

<

:

1C f ..x �L/=r0/=

q

1 � a2
0 if a0 < 1

1 � if ..x �L/=r0/=

q

a2
0 � 1 if a0 > 1

for x 2 .L;LCLP � (2.26b)

(2) impose boundary conditionsNu.0/ D 1 and Nu.L C LP / D 0 to calculateB1 andB2, and (3)
compute the dynamic stiffness as�. N�A/jxD0 using Eqs. (2.9b) and (2.9c). The dimensionless
dynamic stiffness of� is thus obtained as

S.a0/ D S1.a0/

1C jRjexp

�

�2

q

1 � a2
0.LCLP /=r0

�

1 � jRjexp

�

�2

q

1 � a2
0.LCLP /=r0

� (2.27)

with S1.a0/ given by Eq. (2.5),jRj given by Eq. (2.22). HereS.a0/ ! S1.a0/ as jRj ! 0,
i.e., the dynamic stiffness of the entire bounded domain is a good approximation to that of the
unbounded domain if the reflection coefficient is suitably small.

If � is chosen as

�.x/ D
�

1C f e..x � L/=r0/

a0

�

� i
f p..x � L/=r0/

a0

(2.28)

in .L;LCLp�, following Eq. (2.18), then the dynamic stiffness for alla0 is still given by Eq. (2.27),
but with

jRj D exp

"

�2Fe.LP=r0/

s

1

a2
0

� 1

#

exp

"

2iFp.LP=r0/

s

1

a2
0

� 1

#

Thus, the accuracy of the bounded-domain approximation is controllable throughf e for evanescent
waves and throughf p for propagating waves.
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2.6 Effect of PML parameters on accuracy of results

Equation (2.27), withjRj given by Eq. (2.22), is used to investigate the effect of the PML param-
etersLP=r0 andf on the dynamic stiffnessS.a0/, represented in terms of frequency-dependent
stiffness,k.a0/, and damping,c.a0/, coefficients given by the relation

S.a0/ D k.a0/C ia0c.a0/ (2.29)

This approximation to the stiffness of the unbounded medium is compared against the exact stiff-
nessS1.a0/, also decomposed into stiffness and damping coefficients.

To facilitate a meaningful discussion of the effects of these parameters, the attenuation function is
chosen to be of the form

f .x=r0/ WD f0

�

x=r0

LP=r0

�m

(2.30)

which gives

F.LP=r0/ D
f0.LP=r0/

mC 1
(2.31)

Thus the reflection coefficientjRj in Eq. (2.22) depends on the maximum value of the attenuation
function, f0 [D f .LP=r0/], the depth of the PML,LP=r0, and the degree of the polynomial
attenuation function,m. Equation (2.31) suggests that the accuracy will be related directly tof0

and toLP=r0, but inversely tom.

It is demonstrated that it is the depthLP=r0 of the PML that is significant, rather than the sizeL=r0

of the bounded domain. Figure 2.3a shows that ifLP=r0 is not large enough, then increasingL=r0

does not improve the accuracy of the results. However, as shown in Fig. 2.3b, for a sufficiently
large PML (LP=r0 D 1), the size of the bounded domain does not affect the results: in the “eye-
norm”, there is no difference between either approximate result and the exact one.

Figure 2.4 shows the effect of the choice of the attenuation function on the accuracy of results.
As was predicted from Eq. (2.31), increasingf0 increases the accuracy of results, but increasing
m leads to less accurate results. This suggests that the attenuation function should be chosen as a
linear polynomial and that the accuracy should be controlled throughf0. An adequate value off0

can be established through a rudimentary trial-and-error procedure; it is not appropriate to choose
a value off0 by choosing an adequate value ofjRj in e.g., Eq. (2.22), because adequacy of the
value ofjRj is equivalent to adequacy of the value off0.

If the dynamic stiffness of the bounded domain is calculated for� in the PML given by Eq. (2.28)
with f e D f p D f , then the effects ofL=r0, LP=r0, f0 and m on the dynamic stiffness is
qualitatively similar to their effects for� in the PML given by Eq. (2.26b), shown in Figs. 2.3 and
2.4; therefore, these results are not presented here. In fact, a highly accurate dynamic stiffness is
still obtained by choosing the parameter valuesL=r0 D 1=2, LP=r0 D 1, f0 D 10 andm D
1.

Although not presented here, accurate results are also obtainable for a visco-elastic rod, for either
of the choices of� given above.
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Figure 2.3. Effect of size of bounded domain on the accuracy of dynamic stiffness of the elastic
rod for two different depths of the PML;f0 D 10, m D 1.

2.7 Time-harmonic finite-element implementation

The PMM is equivalently interpreted as an inhomogeneous visco-elastic medium, which is then
implemented using standard displacement-based finite elements [65]. Because the displacement
formulation is well known, only the salient steps of the implementation are presented.

Equation (2.9) is rewritten as follows: Equation (2.9a) is multiplied by�.x/, and N" in Eq. (2.9c) is
redefined asN" �.x/N" to obtain an equivalent system of equations

dN�
dx
� kg

A
�.x/ Nu D �!2��.x/ Nu (2.32a)

N� D E
1

�.x/
N" (2.32b)
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Figure 2.4. Effect of attenuation function on the accuracy of dynamic stiffness of the elastic rod;
L=r0 D 1=2, LP=r0 D 1.

N" D dNu
dx

(2.32c)

Here, the coordinate stretch has been transformed into a change in the material parameters; this
PMM can thus be interpreted to be an inhomogeneous visco-elastic medium.

The weak form of Eq. (2.32a) is derived as follows: the equation is first multiplied by an arbitrary
weighting function,w, residing in an appropriate admissible space, and then integrated over�

using integration-by-parts to get
Z

�

dw

dx
N� d�C

Z

�

kg

A
�.x/w Nu d� � !2

Z

�

��.x/w Nu d� D . Nw N�/j@� (2.33)

The functionsNu andw are interpolated element-wise in terms of nodal quantities usingN , a vector
of nodal shape functions, and Eqs. (2.32b) and (2.32c) are substituted into the integrals on the left
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hand side of Eq. (2.33). Restricting the integrals to�e, the element domain, gives the stiffness and
mass matrices for a PML element:

ke
IJ D

Z

�e

dNI

dx
E

1

�.x/

dNJ

dx
d�C

Z

�e

kg

A
�.x/NI NJ d� (2.34a)

me
IJ D

Z

�e

��.x/NI NJ d� (2.34b)

ke
IJ andme

IJ are the nodal submatrices of the entire element matriceske andme, with I andJ

the node numbers andNI the shape function corresponding to nodeI . In Eq. (2.34),� is defined
globally on the computational domain, not element-wise.

The element stiffness and mass matrices obtained above are symmetric, but are intrinsically complex-
valued and frequency-dependent because of the choice for� (Eq. (2.12) or (2.18)). Hence, the
system matrices for� will be complex, symmetric, and sparse, the PML contributions to which
will have to recomputed for each frequency.

2.8 PML for transient analysis and finite-element implementation

An alternate form of the time-harmonic PMM equations (2.9) is used to obtain the corresponding
transient formulation: Eq. (2.9a) is multiplied by�.x/ and Eq. (2.9c) by i!�.x/ to get

dN�
dx
� kg

A
�.x/ Nu D �!2��.x/ Nu (2.35a)

N� D E N" (2.35b)

i!�.x/ N" D i!
dNu
dx

(2.35c)

Because multiplication or division by the factor i! in the frequency domain corresponds to a
derivative or an integral, respectively, in the time domain, time-harmonic equations are easily
transformed into corresponding equations for transient motion if the frequency-dependence of the
former is only a simple dependence on this factor. Therefore, the stretching functions are chosen
to be of the form

�.x/ WD Œ1C f e.x=r0/� � i
f p.x=r0/

a0

(2.36)

Substituting this stretching function into Eq. (2.35) and applying the inverse Fourier transform to
the resultant gives the time-domain equations for the PML:

d�

dx
� kg

A
fm u � fc

cl

r0

kg

A
U D �fm RuC �fc

cl

r0

Pu (2.37a)

� D E" (2.37b)

fm P"C fc
cl

r0

" D dPu
dx

(2.37c)
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where

U D
Z t

0

u d� (2.38)

and
fm WD Œ1C f e.x=r0/� ; fc WD f p.x=r0/ (2.39)

The application of the inverse Fourier transform to obtainU assumes thatNu.! D 0/ D 0. The
presence of the time-integral ofu in the governing equations, although unconventional from the
point-of-view of continuum mechanics, is not unnatural in a time-domain implementation of a
PML obtained without field-splitting [70].

Equation (2.37) is implemented using a standard displacement-based finite-element approach [71].
The weak form of Eq. (2.37a) is derived by multiplying it with an arbitrary weighting function
w residing in an appropriate admissible space, and then integrating over the entire computational
domain� using integration-by-parts to obtain

Z

�

�fmw Ru d�C
Z

�

�fc
cl

r0

w Pu d�C
Z

�

dw

dx
� d�C

Z

�

kg

A
fmwu d�C

Z

�

fc
cl

r0

kg

A
wU d� D .w�/j@� (2.40)

The weak form is first spatially discretised by interpolatingu andw element-wise in terms of nodal
quantities using appropriate nodal shape functions. This leads to the system of equations

m Rd C c Pd C kd CKDC fint D fext (2.41)

wherem, c, k andK are system matrices,d is a vector of nodal displacements,D is the time-
integral ofd , fint is a vector of internal force terms, andfext is a vector of external forces. These
matrices and vectors are assembled from corresponding element-level matrices and vectors. In
particular, the element-level constituent matrices ofm, c, k andK are, respectively,

me D
Z

�e

�fmN T N d�; ce D
Z

�e

�fc
cl

r0

N T N d�

ke D
Z

�e

kg

A
fmN T N d�; Ke D

Z

�e

fc
cl

r0

kg

A
N T N d� (2.42a)

and the element-level internal force term is

f e D
Z

�e

dN

dx

T

� d� (2.42b)

whereN is a row vector of element-level nodal shape functions The functionsf e andf p are
defined globally on the computational domain, not element-wise.

Equation (2.41) can be solved using a time-stepping algorithm such as the Newmark method [72,
73], along with Newton-Raphson iteration at each time step to enforce equilibrium. If Eq. (2.41) is

16



solved, say, at time stationtnC1, given the solution attn, the Newton-Raphson iteration at this time
step will require a) calculation of�nC1, for calculatingf e

nC1 [� f e.tnC1/], and b) a consistent
linearisation [71, vol. 2] off e

nC1 at dnC1 [� de.tnC1/], wherede is a vector of element-level
nodal displacements. Therefore, Eq. (2.37c) is discretised using a backward Euler scheme on" to
obtain

"nC1 D
�

fm

�t
C fc

cl

r0

��1 �

dN

dx
vnC1 C

fm

�t
"n

�

(2.43)

wherevnC1 � Pde.tnC1/, and�t is the time-step size. The time-discrete form of Eq. (2.37b)
is

�nC1 D E"nC1 (2.44)

which gives the internal force term

f e
nC1 D

Z

�e

dN

dx

T

�nC1 d� (2.45)

Linearisation of Eq. (2.45) gives

�f e
nC1 D

"

Z

�e

dN

dx

T

D
dN

dx
d�

#

�vnC1 (2.46)

where� is the differential operator, and

D D E

�

fm

�t
C fc

cl

r0

��1

(2.47)

i.e., this linearisation gives a tangent matrix

Lce WD
Z

�e

dN

dx

T

D
dN

dx
d� (2.48)

which may be incorporated into the effective tangent stiffness used in the time-stepping algo-
rithm.

Furthermore, the time-integral ofd is approximated as

DnC1 DDn C dnC1�t (2.49)

Thus the term involvingD in Eq. (2.41) may be linearised as

�.KDnC1/ D .K�t/ �dnC1 (2.50)

A skeleton of the algorithm for computing the element-level effective internal force and tangent
stiffness is given in Box 2.1. The system matricesm, c, k andK are clearly symmetric. Moreover,
because all these matrices are of the same form as the system matrices for an elastic medium, the
effective tangent stiffness (say, as found in the Newmark scheme) of the entire computational do-
main will be positive definite iff e andf p are positive. Furthermore, since all the system matrices,
m, c, Lc, k andK that constitute the tangent stiffness are independent ofd , this is effectively a
linear model.
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Box 2.1. Computing effective force and stiffness for rod-on-foundation PML element.

1. Compute system matricesme, ce, ke and Ke [Eq. (2.42a)].
2. Compute internal forcef e

nC1 [Eq. (2.45)].
Use"nC1 [Eq. (2.43)] and�nC1 [Eq. (2.44)].

3. Compute tangent matrixLce [Eq. (2.48)] usingD [Eq. (2.47)].
4. Compute effective internal forceQf e

nC1 and tangent stiffnessQke:

Qf e
nC1 D meanC1 C cevnC1 C kednC1 CKe

DnC1 C f e
nC1

Qke D ˛k .k
e CKe�t/C ˛c .c

e C Lce/C ˛mme

whereanC1 � Rde.tnC1/, and, for example,

˛k D 1; ˛c D



ˇ�t
; ˛m D

1

ˇ�t2

for the Newmark method.
Note: The tangent stiffnessQke is independent of the solution, and thus has to be computed
only once. However, the internal forcef e

nC1 has to be re-computed at each time-step be-
cause it is dependent on the solution at past times.

2.9 Numerical results

2.9.1 Time-harmonic analysis

The dynamic stiffness,S.a0/, of� at x D 0, with � as defined in Eq. (2.26), is computed using a
finite-element model consisting of two-noded linear isoparametric elements. The mesh is chosen
to havenb elements in a length ofr0 in the bounded domain andnp elements perr0 length in the
PML; nb andnp are parameters in the analysis.

For a sufficiently dense mesh (nb D np D 30), the results from the finite-element model for either
choice of� in the PML (Eq. (2.26b) or Eq. (2.28)) match the corresponding analytical results
for the dynamic stiffness of the bounded domain, e.g., the results presented in Figs. 2.3 and 2.4;
therefore, the numerical results are not presented separately.

The effect of mesh density on the accuracy of the computed dynamic stiffness is investigated.
Because the mesh should adequately capture significant spatial variations in the displacements,
the mesh density in the PML should be governed by both the wavelength and the sharpness of
the spatial attenuation. If the spatial attenuation is independent of the frequency, in the case of
low frequencies the density should be governed by the sharpness of the attenuation and by the
wavelength for high frequencies. The qualifiers “high” and “low” are characterised by the relation
of the wavelength to the sharpness of the attenuation. Thus, it should suffice to choose the mesh
density in the entire bounded domain to be adequate for a high enough frequency, with the density
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in the PML similar to that in the bounded domain.

Figure 2.5 shows the effect of mesh density in the PML on the accuracy of the dynamic stiffness for
two values ofnb. The stiffness coefficient computed withnp D nb D 10 shows a slight oscillation
about the exact solution, with its amplitude increasing with frequency. Increasingnp gives accurate
results fora0 / 4; the error found in the higher frequencies is becausenb D 10 is not adequate in
that range. The slight deterioration in accuracy of results fornp D 4nb over those fornp D 2nb

may be due to the contrast between the densities in�BD and�PM. For a largernb (D 20), both
np D nb andnp D 2nb give highly accurate results. This demonstrates that if the mesh density in
the entire bounded domain is adequate for the range of frequencies considered, the accuracy may
not be significantly sensitive to the choice ofnp, providednp > nb. In other words, this suggests
that the mesh density in the PML should be chosen to be similar to that in the bounded domain,
echoing conclusions reached by an earlier dispersion analysis [44].

0

1

0 1 2 3 4 5

k(
a 0

)

a0

Exact
FE PML with np = nb

2nb
4nb

0

1

0 1 2 3 4 5

c(
a 0

)

a0
(a)nb D 10

0

1

0 1 2 3 4 5

k(
a 0

)

a0

Exact
FE PML with np = nb

2nb

0

1

0 1 2 3 4 5

c(
a 0

)

a0
(b) nb D 20

Figure 2.5. Effect of mesh density in the PML on accuracy of dynamic stiffness of elastic rod for
two different mesh densities in the elastic domain;L=r0 D 1=2, LP=r0 D 1, f0 D 10, m D 1.
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It is computationally advantageous to choose� in the PML so that the attenuation does not increase
too strongly with frequency, especially for higher frequencies, as is indeed the case for functions�

in both Eq. (2.26b) and Eq. (2.28). An alternate choice of

�.x/ D 1C f e..x � L/=r0/ � if p..x �L/=r0/ (2.51)

in the PML results in sharper attenuation for higher frequencies, thus requiring higher densities
over-and-above the usual high density requirements for high frequencies. As shown in Fig. 2.6,
the FE solution obtained using Eq. (2.28) is close to the exact result. The error inc.a0/ for very low
frequencies is due to the division of ImNS.a0/ by small values ofa0. In contrast, the FE solution for
Eq. (2.51) does show a slight error ink.a0/ for a0 > 3 which is due to inadequate mesh density in
the PML. Although not presented here, this error is not found in either the corresponding analytical
solution or the FE solution for a denser PML mesh (nb D 30, np D 60).
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Figure 2.6. Effect of frequency dependence of stretching function on the accuracy of the finite-
element solution, with� in the PML as defined in (a) Eq. (2.28), and (b) Eq. (2.51);nb D np D 30;
L=r0 D 1=2, LP=r0 D 1, f0 D 10, m D 1.

2.9.2 Transient analysis

The effectiveness of the formulation presented in Sec. 2.8 is demonstrated by computing the re-
sponse of the rod on elastic foundation to a transient excitation. The mesh chosen for the bounded-
domain-PML model (Fig. 2.2b) is of the same form as chosen for time-harmonic analysis, with a
sufficient mesh density (nb D np D 30). The system is subjected to a specified displacementu0.t/

at x D 0 in the form of a time-limited cosine wave, bookended by cosine half-cycles so that the
initial displacement and velocity as well as the final displacement and velocity are zero. This im-
posed displacement is characterised by two parameters: the durationtd and the dominant forcing
frequency!f ; a typical waveform and its Fourier transform are shown in Fig. 2.7, and a detailed
description of the waveform is given in Appendix A. Figure 2.8 presents the reaction of the rod
at x D 0 computed using the PML model against exact reactions computed using a convolution
integral [6, pg. 344]; the PML results are virtually indistinguishable from the exact results.
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Figure 2.7. Plot of typical (a) input displacement withtd D 20 and (b) amplitude of its Fourier
transform, with!f D 2.
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Figure 2.8. Nodal reaction of rod on elastic foundation, due toimposed nodal displacement;
L=r0 D 1=2, LP=r0 D 1, f0 D 10, m D 1; td D 20, !f D 1:5.
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3 TIME-HARMONIC ACOUSTIC WAVES: THE HELMHOLTZ
EQUATION

3.1 Introduction

The ideas developed for the one-dimensional problem in Chapter 2 are used analogously to develop
a PML for time-harmonic acoustic waves, governed by the Helmholtz equation. It is shown that the
perfect matching and attenuative properties of the PML carry over directly to higher dimensions.
The PML model is implemented using finite elements by first expressing the PML equations in
tensorial form.

3.2 Acoustic medium

Consider a linear, ideal, inviscid and compressible fluid, moving with zero mean velocity in the
absence of body forces. The dynamic pressurep in the fluid (in excess of static pressure) is
governed by the scalar wave equation, presented here in a slightly-unconventional form that will
facilitate formulation of the PML equations:

X

i

@'i

@xi

D � Rp (3.1a)

'i D �
i (3.1b)


i D
@p

@xi

(3.1c)

where� is the bulk modulus of the medium and� its mass density, and the indexi ranges over the
spatial dimensions of the problem;'i and
i are merely internal variables introduced to allow the
wave equation to be written as above.

If the medium is subjected to a time-harmonic excitation (through boundary conditions) then the
pressurep is also time-harmonic of the formp.x; t/ D Np.x/ exp.i!t/, where! is the frequency
of excitation, with Np.x/ governed by the Helmholtz equation:

X

i

@ N'i

@xi

D �!2� Np (3.2a)

N'i D � N
i (3.2b)

N
i D
@ Np
@xi

(3.2c)
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On an unbounded domain, Eq. (3.2) admits wave solutions of the form

Np.x/ D expŒ�ik x � r � (3.3)

wherek D !=C is the wavenumber, with wave speedC D
p

�=�, andr is a unit vector denoting
the propagation direction.

3.3 Perfectly matched medium

The summation convention is abandoned in this section.

Consider a system of equations of the same form as Eq. (3.2), but withxi replaced by stretched
coordinatesQxi, defined as [66]

Qxi WD
Z xi

0

�i.s/ ds (3.4)

where�i are nowhere-zero, continuous, complex-valued coordinate stretching functions. This
coordinate stretching formally implies

@

@ Qxi

D 1

�i.xi/

@

@xi

(3.5)

thus, this system of equations can be defined as

X

i

1

�i.xi/

@ N'i

@xi

D �!2� Np (3.6a)

N'i D � N
i (3.6b)

N
i D
1

�i.xi/

@ Np
@xi

(3.6c)

A PMM for time-harmonic acoustic waves is defined to be one governed by Eq. (3.6); an acoustic
medium corresponds to�i.xi/ � 1. Equation (3.6) is defined independently of, but motivated
by, the definition ofQxi; this is comparable to the definition of Eq. (2.9) for the one-dimensional
PMM.

Given the continuity of�i , solutions admitted in the PMM are similar in form to that in Eq. (3.3)
admitted in the acoustic medium, but withxi replaced byQxi. Thus, Eq. (3.6) admits wave-type
solutions of the form

Np.x/ D expŒ�ik Qx � r � (3.7)

on an unbounded domain.

The perfect matching property of these PMMs is that if two PMMs with different�i are placed
adjacent to each other, with the functions�i for the two media such that they match at the interface

24



of the media, then a propagating wave will pass through the interface without generating any
reflected wave. This property is shown as follows. It is implicitly assumed in the definition of the
PMM that�i is a function ofxi only, i.e., the coordinate stretches are uncoupled [66]. For the sake
of illustration, consider the two-dimensional problem of thex1-x2 plane, with two PMMs defined
on it: one on the left half plane (WD f.x1; x2/jx1 < 0g) with �i.xi/ WD �lt

i .xi/, and another on the
right half plane (WD f.x1; x2/jx1 > 0g) with �i.xi/ WD �rt

i .xi/. If �lt
2 D �rt

2, and if�lt
1.0/ D �rt

1.0/,
then the two PMMs can be considered as one PMM, wherein a continuous�1 is defined piecewise
on the two half planes, and each�i is a function ofxi only; thus there is no interface to generate any
reflected wave. A similar argument for three-dimensional problems leads to identical conclusions.
This perfect matching property holds for any wave solution admitted by the PMM. In particular,
for a wave-type solution as in Eq. (3.7), the matching is independent of the direction of propagation
r and of the wavenumberk (or frequency!).

A suitable choice of�i imposes an attenuation on the wave solutions to Eq. (3.6). Consider the
wave-type solution in Eq. (3.7). If the functions�i are defined in terms of real-valued, continuous
attenuation functionsfi as

�i.xi/ WD 1 � i
fi.xi/

k
(3.8)

then

Qxi D xi � i
Fi.xi/

k
(3.9)

where

Fi.xi/ WD
Z xi

0

fi.�/ d� (3.10)

Substituting Eq. (3.9) into Eq. (3.7) gives

Np.x/ D exp

"

�
X

i

Fi.xi/ri

#

expŒ�ik x � r � (3.11)

Thus, ifFi.xi/ > 0 andri > 0, then Np.x/ is attenuated as expŒ�Fi.xi/ri � in thexi-direction, and
the attenuation is independent of the frequency ifri is.

3.4 Perfectly matched layer

Consider a wave of the form in Eq. (3.3) propagating in an unbounded acoustic domain, thex1-x2

plane, governed by Eq. (3.1). The objective of defining a PML is to simulate this wave propagation
by using a corresponding bounded domain. Consider the replacement of the unbounded domain
by �BD [ �1

PM as shown in Fig. 3.1a, where�BD is a “bounded” (truncated) domain, governed
by Eq. (3.1), and�1

PM is the unbounded PMM, governed by Eq. (3.6), with�1 of the form in
Eq. (3.8), satisfyingf1.0/ D 0, and�2 � 1. Because a) the medium in�BD is a special PMM
[�i.xi/ � 1, no summation], and b) the functions�i for the two media are chosen to be matched
at the interface, all waves of the form in Eq. (3.3) propagating outwards from�BD (waves with
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r1 > 0) are completely absorbed into and then attenuated in thex1-direction in�1
PM. Thus the

pressures in�BD due to an outward propagating wave are exactly the same as the pressures of the
original unbounded acoustic medium in�BD due to the same wave.

x1 x1

x2 x2

(a) (b)

Outgoing wave

Attenuated wave� �

Reflected wave

�BD�BD �1
PM �PM

Lp

Figure 3.1. (a) A PMM adjacent to a “bounded” (truncated) domain attenuates an outgoing plane
wave; (b) a PML with a fixed edge also reflects the wave back towards the bounded domain.

If this outward propagating wave is attenuated enough in a finite distance, then�1
PM can be trun-

cated by a fixed boundary without any significant reflection of the wave. Shown in Fig. 3.1b, this
layer�PM of the PMM is termed the PML. If the wave reflection from the fixed boundary is not
significant, then the pressures of this system (�BD [ �PM) in �BD should be almost the same as
those of the unbounded acoustic domain in�BD.

The effect of domain truncation in the PMM is analysed by studying the reflection of plane waves
by the fixed boundary. As shown in Fig. 3.1b, the plane wave, incident at an angle� and of unit
amplitude as it enters the PML, is reflected from the fixed boundary. Therefore, the total wave
motion can be represented as

Np.x/ D exp
h

�ik Qx � r.I /
i

CR exp
h

�ik Qx � r.R/
i

(3.12)

wherer.I / andr.R/ are the propagation directions of the incident and reflected waves respectively.
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Imposing Np.x/ � 0 for x1 D LP and for allx2, and substitutingr .I /

1 D cos� , gives

jRj D expŒ�2F1.LP / cos�� (3.13)

which is also the amplitude of the reflected wave as it exits the PML. This reflection coefficient is
controlled by the choice of the parametersf1 andLP — independently of the size of the bounded
domain to which the PML is adjacent — and is influenced by the angle of incidence. This suggests
that the bounded domain may be restricted to the region of interest in the analysis, thus lowering
the computational cost, if the parameters and the orientation of the PML are chosen appropri-
ately.

The above arguments considered a two-dimensional problem only for the sake of illustration;
the same reasoning may be extended to three-dimensional problems to reach an identical con-
clusion.

3.5 Finite-element implementation

A finite-element implementation of the PMM may be obtained by rewriting its governing equations
in a tensorial form. Consider two rectangular Cartesian coordinate systems for the plane as follows:
1) anfxig system, with respect to an orthonormal basisfeig, and 2) anfx0

ig system, with respect
to another orthonormal basisfe0

ig, with the two bases related by the rotation-of-basis matrixQ,
with componentsQij WD ei � e0

j . Equation (3.6) can be re-written in terms of the coordinatesx0
i by

replacingxi by x0
i throughout, as (no summation)

X

i

1

�i.x
0
i/

@ N' 0
i

@x0
i

D �!2� Np (3.14a)

N' 0
i D � N
 0

i (3.14b)

N
 0
i D

1

�i.x
0
i/

@ Np
@x0

i

(3.14c)

representing a PMM wherein waves are attenuated in thee0
1 ande0

2 directions, rather than in the
e1 ande2 directions as in Eq. (3.6);N' 0

i and N
 0
i are the components of the vectorsN' WD N'iei and

N
 WD N
iei , respectively, in the basisfe0
ig. Further, define a functionJ as

J D
(

�1.x
0
1/�2.x

0
2/ for two-dimensional problems

�1.x
0
1/�2.x

0
2/�3.x

0
3/ for three-dimensional problems

(3.15)

i.e., the determinant of the Jacobian of the coordinate stretch. By multiplying Eq. (3.14a) withJ

and using the fact that�i is a function ofx0
i only, it can be rewritten as

r
0 �

�

Jƒ0 N'
�

D �!2�J Np (3.16a)

N'0 D � N
 0 (3.16b)

N
 0 D ƒ0
�

r
0 Np

�

(3.16c)
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where N'0, N
 0 and r
0 are column vectors with componentsN' 0

i, N
 0
i and@=@x0

i, respectively, and

ƒ0 D
(

diag
�

1=�1.x
0
1/; 1=�2.x

0
2/

�

for two-dimensional problems

diag
�

1=�1.x
0
1/; 1=�2.x

0
2/; 1=�3.x

0
3/

�

for three-dimensional problems
(3.17)

The various primed quantities in Eq. (3.16) can be transformed to the basisfeig to obtain

r � .Jƒ N'/ D �!2�J Np (3.18a)

N' D � N
 (3.18b)

N
 D ƒ .r Np/ (3.18c)

where
ƒ D Qƒ0QT (3.19)

is termed thestretch tensor. Because this tensor is diagonal in the basisfe0
ig, this basis is termed

thecharacteristic basisof the PMM. In tensorial notation, Eq. (3.18) becomes

div .Jƒ N'/ D �!2�J Np (3.20a)

N' D � N
 (3.20b)

N
 D ƒ .grad Np/ (3.20c)

The weak form of Eq. (3.20a) is derived by multiplying it with an arbitrary weighting function
w residing in an appropriate admissible space, and then integrating over the entire computational
domain� using integration-by-parts and the divergence theorem to obtain

Z

�

gradw � .ƒ N'/ Jd� � !2

Z

�

�w Np Jd� D
Z

�

w .ƒ N'/ � n Jd�; (3.21)

where� WD @� is the boundary of� andn is the unit outward normal to� . Assuming element-
wise interpolations ofNp andw in terms of nodal shape functionsN , imposing Eqs. (3.20b) and
(3.20c) point-wise in Eq. (3.21), and restricting the domain integrals to the element domain� D
�e gives the “stiffness” and “mass” matrices for a PML element. In terms of nodal submatrices,
these are

he
IJ D

Z

�e

.ƒ gradNI /
T � .ƒ gradNJ / Jd� (3.22a)

se
IJ D

Z

�e

�NI NJ Jd�; (3.22b)

whereI andJ denote node numbers of the element. In Eq. (3.22), the functions�i in ƒ and
in J are defined globally on the computational domain, not element-wise. The right-hand side
in Eq. (3.21) is conveniently ignored by assuming that.ƒ N'/ � n D 0 on a free boundary of the
PMM. Note that these system matrices for the PMM could also have been obtained by applying
coordinate-stretching to the corresponding matrices for the acoustic medium.
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For two-dimensional problems, the above is the FE implementation presented by Collino and
Monk [74] and studied further by Harari et al. [44]. These element matrices are symmetric, but
intrinsically complex-valued and frequency-dependent. Hence, the system matrices for� will be
complex, symmetric, and sparse, the PML contributions to which will have to recomputed for each
frequency.

3.6 Numerical results

3.6.1 A two-dimensional problem

Consider a two-dimensional acoustic waveguide in the form of a semi-infinite layer, as shown in
Fig. 3.2a, with pressures governed by Eq. (3.2) with the following boundary conditions:

Np.x/ D 0 at x2 D d; 8x1 > 0 (3.23a)

@ Np
@x2

D 0 at x2 D 0; 8x1 > 0 (3.23b)

@ Np
@x1

D �� .x2=d/ at x1 D 0; 8x2 2 Œ0; d � (3.23c)

and a radiation condition forx1 !1, where is the mode of excitation, given by

 .s/ D 4s.1 � s/; s 2 Œ0; 1� (3.24)

The wave motion in this waveguide it is dispersive, and consists of not only propagating modes but
also an infinite number of evanescent modes, with the propagation (and decay) in thex1-direction.
The response of the system is calculated as the force atx1 D 0 in the mode :

NFD
Z H

0

 .x2=d/ Np.x1 D 0/ dx2 (3.25)

This semi-infinite layer is modelled using the bounded-domain-PML model shown in Fig. 3.2b,
composed of a bounded domain�BD and a PML�PM. Motivated by the realistic choice of a
stretching function in Eq. (2.18), the stretching functions�i are chosen as (no summation)

�i.xi/ WD
�

1C fi.xi/

a0

�

� i
fi.xi/

a0

(3.26)

to attenuate both propagating and evanescent waves in the system, withf1 chosen to be linear in the
PML — in view of the conclusions of Sec. 2.6 — andf2 D 0 matching the corresponding function
in �BD. A stretching function of the form in Eq. (3.8) will not be adequate for evanescent modes,
an observation mirrored in electromagnetics literature [75, 76], where alternative choices of the
stretching function have been considered for attenuating evanescent waves. For purposes of com-
parison, the layer is also modelled using a viscous-dashpot model [16], with consistent dashpots
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�BD �PM

LpL

d

Acoustic waveguide

Np D 0

Np D 0

Np D 0

f1.x1/

f2.x2/ D 0

@ Np=@x2 D 0

Figure 3.2. (a) Two-dimensional acoustic waveguide of depthd ; (b) a PML model.

placed at the edgex1 D LC LP , and the entire domain�BD [�PM taken to be acoustic. A uni-
form finite-element mesh of square four-node bilinear isoparametric elements is used to discretise
the entire bounded domain for either model, with 16 elements in the depth of the waveguide.

Figure 3.3 shows the harmonic modal force due to the pressure in the waveguide [Eq. (3.25)]
computed using the PML model and the viscous dashpot model, against an analytical solution [77].
It is seen that the results from the PML model are highly accurate, even though they are obtained
using a small computational domain and at a low cost: the cost of the PML model is similar to that
of the dashpot model, and the grossly inaccurate results from the latter emphasize the small size of
the computational domain. Significantly, the high accuracy of the PML results demonstrates that
the stretching function of Eq. (3.26) adequately attenuates the infinite number of evanescent modes
in this waveguide.

3.6.2 A three-dimensional problem

Consider a three-dimensional acoustic waveguide in the form of a semi-infinite prismatic channel
of trapezoidal cross-section, as shown in Fig. 3.4a, with pressures governed by Eq. (3.2) with the
following boundary conditions:

Np.x/ D 0 at x2 D d (3.27a)

@ Np
@n
D 0 at lateral and bottom surfaces (3.27b)

@ Np
@x1

D �� at x1 D 0 (3.27c)
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Figure 3.3. Harmonic modal force due to dynamic pressure in two-dimensional waveguide, com-
puted using a PML model as well as a viscous dashpot model, and normalised against its value at
a0 D 0; L D d=2, LP D d , f1.x1/ D 10hx1 �Li=LP ; � D 1, � D 1; hxi WD .x C jxj/=2.

and a radiation condition forx1 ! 1, where@=@n is the normal derivative at a surface. The
response of the system is calculated as the force atx1 D 0:

NFD
Z

fx1D0g

Np.x1 D 0/ dx2dx3 (3.28)

1

x1

x2

x3

L

Lp

d

b

2b

(a) (b)

Np D 0

@ Np=@n D 0

�BD

�PM

Figure 3.4. (a) Three-dimensional acoustic waveguide of depthd ; (b) a PML model.

This semi-infinite channel is modelled using the bounded-domain-PML model shown in Fig. 3.4b,
composed of a bounded domain�BD and a PML�PM. The stretching functions are chosen as in
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Eq. (3.26), withf1 chosen to be linear in the PML andf2 D f3 D 0 matching the corresponding
function in�BD. For purposes of comparison, the layer is also modelled using a viscous-dashpot
model [16], with consistent dashpots placed at the edgex1 D L C LP , and the entire domain
�BD [�PM taken to be acoustic. A uniform finite-element mesh of eight-node trilinear isopara-
metric elements is used to discretise the entire bounded domain for either model, with 20 elements
across and along the depth of the channel, and 20 elements per unit length in thex1 direction.

Figure 3.5 shows the harmonic force due to the pressure in the waveguide [Eq. (3.28)] computed
using the PML model and the viscous dashpot model, against a semi-analytical solution [78]. It is
seen that the results from the PML model are highly accurate, even though they are obtained using
a small computational domain and at a low cost: the cost of the PML model is similar to that of
the dashpot model, and the grossly inaccurate results from the latter emphasize the small size of
the computational domain.
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Figure 3.5. Harmonic force due to dynamic pressure in three-dimensional waveguide, computed
using a PML model as well as a viscous dashpot model, and normalised against its value ata0 D 0;
L D d=2, LP D d , f1.x1/ D 30hx1 �Li=LP ; � D 1, � D 1; hxi WD .x C jxj/=2.
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4 TRANSIENT ACOUSTIC WAVES: THE SCALAR WAVE EQUATION

4.1 Introduction

The previous chapter developed the PML equations for the Helmholtz equation, which is obtained
by a Fourier transform of the scalar wave equation [Eq. (3.1)]. This chapter first develops the PML
equations for the scalar wave equation by applying the inverse Fourier transform to the Helmholtz
PML equations, and then provides a finite-element implementation of these equations.

Recall that, for both two- and three-dimensional problems, the equations for the time-harmonic
acoustic PML are [Eq. (3.20)]:

div .Jƒ N'/ D �!2�J Np (4.1a)

N' D � N
 (4.1b)

N
 D ƒ .grad Np/ (4.1c)

where the specific definitions ofƒ [Eqs. (3.19), (3.17)] andJ [Eq. (3.15)] distinguish between the
two classes of problems.

Because multiplication or division by the factor i! in the frequency domain corresponds to a
derivative or an integral, respectively, in the time domain, time-harmonic equations are easily
transformed into corresponding equations for transient motion if the frequency-dependence of the
former is only a simple dependence on this factor. Therefore, the stretching functions are chosen
to be of the form (no summation)

�i.x
0
i/ WD

�

1C f e
i .x

0
i/

�

� i
f

p
i .x

0
i/

a0

(4.2)

using a normalised frequencya0 D kb, whereb a characteristic length of the physical problem and
k is the wavenumber; the functionsf e

i serve to attenuate evanescent waves whereas the functions
f

p
i serve to attenuate propagating waves.

Substituting Eq. (4.2) in Eq. (4.1) throughƒ andJ result in different sets of time-domain equations
for two- and three-dimensional problems that are not easily amenable to expression in an unified
form in a manner similar to Eq. (4.1) for time-harmonic problems. These two sets of equations are
therefore discussed separately in this chapter.
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4.2 Two-dimensional problems

4.2.1 Time-domain equations for the PML

For�i as in Eq. (4.2), the stretch tensorƒ and the productJƒ for two-dimensional problems can
be written as

ƒ D
�

FeC 1

i!
Fp

��1

Jƒ D QFeC 1

i!
QFp (4.3)

where
QFeD Q QFe0QT ; QFp D Q QFp0QT ; FeD QFe0

QT ; Fp D QFp0
QT (4.4)

with

QFe0 WD diag
�

1C f e
2 .x

0
2/; 1C f e

1 .x
0
1/

�

; QFp0 WD diag
�

f
p

2 .x
0
2/; f

p
1 .x

0
1/

�

� C=b (4.5a)

and

Fe0 WD diag
�

1C f e
1 .x

0
1/; 1C f e

2 .x
0
2/

�

; Fp0 WD diag
�

f
p

1 .x
0
1/; f

p
2 .x

0
2/

�

� C=b (4.5b)

Equation (4.1c) is premultiplied by i!ƒ�1, Eqs. (4.2) and (4.3) are substituted into Eq. (4.1), and
the inverse Fourier transform is applied to the resultant to obtain the time-domain equations for the
two-dimensional acoustic PML:

div Q' D �fm Rp C �
C

b
fc Pp C �

�

C

b

�2

fkp (4.6a)

' D �
 (4.6b)

Fe P
 C Fp
 D grad Pp (4.6c)

where

Q' WD QFe'C QFp˚; with ˚ WD
Z t

0

' d� (4.7)

and

fm WD
�

1C f e
1 .x

0
1/

� �

1C f e
2 .x

0
2/

�

fc WD
�

1C f e
1 .x

0
1/

�

f
p

2 .x
0
2/C

�

1C f e
2 .x

0
2/

�

f
p

1 .x
0
1/ (4.8)

fk WD f p
1 .x

0
1/f

p
2 .x

0
2/

The application of the inverse Fourier transform to obtain˚ assumes thatN'.! D 0/ D 0.
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4.2.2 Finite-element implementation

Equation (4.6) is implemented using a standard displacement-based finite-element approach [71].
The weak form of Eq. (4.6a) is derived by multiplying it with an arbitrary weighting functionw

residing in an appropriate admissible space, and then integrating over the entire computational
domain� using integration-by-parts and the divergence theorem to obtain

Z

�

�fmw Rp d�C
Z

�

�
C

b
fcw Pp d�C

Z

�

�

�

C

b

�2

fkwp d�

C
Z

�

gradw � Q' d� D
Z

�

w Q' � n d� (4.9)

where� WD @� is the boundary of� andn is the unit outward normal to� . The weak form is
first spatially discretised by interpolatingp andw element-wise in terms of nodal quantities using
appropriate nodal shape functions. This leads to the system of equations

s RpC b Pp C hp C fint D fext (4.10)

wheres, b andh are the “mass”, “damping” and “stiffness” matrices, respectively,p is a vector of
nodal pressures,fint is a vector of internal “force” terms, andfext is a vector of external “forces”.
These matrices and vectors are assembled from corresponding element-level matrices and vectors.
In particular, the element-level constituent matrices ofs, b andh are, respectively,

se D
Z

�e

�fmN T N d�; be D
Z

�e

�
C

b
fcN

T N d�; he D
Z

�e

�

�

C

b

�2

fkN
T N d�

(4.11a)
and the element-level internal force term is

f e D
Z

�e

BT Q' d� (4.11b)

whereN is a row vector of element-level nodal shape functions, and

B D
�

N;1

N;2

�

(4.12)

The functionsf e
i andf p

i are defined globally on the computational domain, not element-wise. It
is conveniently assumed thatQ' � n D 0 on a free boundary of the PML.

Equation (4.10) can be solved using a time-stepping algorithm such as the Newmark method [72,
73], along with Newton-Raphson iteration at each time step to enforce equilibrium. If Eq. (4.10) is
solved, say, at time stationtnC1, given the solution attn, the Newton-Raphson iteration at this time
step will require a) calculation ofQ'nC1, for calculatingf e

nC1 [� f e.tnC1/], and b) a consistent
linearisation [71, vol. 2] off e

nC1 atpnC1 [� pe.tnC1/], wherepe is a vector of element-level nodal
pressures. Therefore, Eq. (4.6c) is discretised using a backward Euler scheme on
 to obtain


nC1 D
�

Fe

�t
C Fp

��1 �

B PpnC1 C
Fe

�t

n

�

(4.13)
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where�t is the time-step size. The time-discrete form of Eq. (4.6b) is

'nC1 D �
nC1 (4.14)

Furthermore, Eq. (4.7b) is used to approximate˚nC1 as

˚nC1 D ˚n C 'nC1�t (4.15)

Equation (4.15) is substituted in Eq. (4.7a) to obtain

Q'nC1 D �t

"

QFe

�t
C QFp

#

'nC1 C QFp˚n (4.16)

This gives the internal force term

f e
nC1 D

Z

�e

BT Q'nC1 d� (4.17)

Linearisation of Eq. (4.17) gives

�f e
nC1 D

�Z

�e

BT DB d�

�

� PpnC1 (4.18)

where� is the differential operator, and

D D ��t

"

QFe

�t
C QFp

#

�

Fe

�t
C Fp

��1

(4.19)

i.e., this linearisation gives a tangent matrix

Lbe WD
Z

�e

BT DB d� (4.20)

which may be incorporated into the effective tangent matrix used in the time-stepping algorithm.

A skeleton of the algorithm for computing the element-level effective internal force and tangent
matrix is given in Box 4.1. The matrixLbe is symmetric becauseD is symmetric by the virtue of the
coaxiality of the constituent matrices. The other system matrices,s, b andh are clearly symmetric
by Eq. (4.11a). Moreover, because all these matrices are of the same form as the system matrices
for an acoustic medium, the effective tangent matrix (say, as found in the Newmark scheme) of the
entire computational domain will be positive definite iff e

i andf p
i are positive. Furthermore, since

all the system matrices,s, b, Lb andh that constitute the tangent matrix are independent ofp, this
is effectively a linear model.
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Box 4.1. Computing effective force and tangent for 2D acousticPML element.

1. Compute system matricesse, be and he [Eq. (4.11a)].
2. Compute internal forcef e

nC1 [Eq. (4.17)].
Use
nC1 [Eq. (4.13)],'nC1 [Eq. (4.14)] andQ'nC1 [Eq. (4.16)].

3. Compute tangent matrixLbe [Eq. (4.20)] usingD [Eq. (4.19)].
4. Compute effective internal forceQf e

nC1 and tangent matrixQhe:

Qf e
nC1 D se RpnC1 C be PpnC1 C hepnC1 C f e

nC1

Qhe D ˛hh
e C ˛b

�

be C Lbe
�

C ˛ss
e

where, for example,

˛h D 1; ˛b D



ˇ�t
; ˛sD

1

ˇ�t2

for the Newmark method.
Note: The tangent matrixQhe is independent of the solution, and thus has to be computed
only once. However, the internal forcef e

nC1 has to be re-computed at each time-step be-
cause it is dependent on the solution at past times.

4.2.3 Numerical examples

Consider a two-dimensional acoustic wave guide in the form of a semi-infinite layer, as shown in
Fig. 3.2a, with pressures governed by Eq. (3.1) with the following boundary conditions:

p.x; t/ D 0 atx2 D d; 8x1 > 0 (4.21a)

@p

@x2

D 0 atx2 D 0; 8x1 > 0 (4.21b)

@p

@x1

D �� .x2=d/u0.t/ atx1 D 0; 8x2 2 Œ0; d � (4.21c)

and a radiation condition forx1 !1, where is the mode of excitation, given by Eq. (3.24), and
u0.t/ is the excitation-history, given by Eq. (A3). The response of the system is calculated as the
force atx1 D 0 in the mode :

F.t/ D
Z H

0

 .x2=d/p.x1 D 0; t/ dx2 (4.22)

This semi-infinite layer is modelled using the bounded-domain-PML model shown in Fig. 3.2b,
composed of a bounded domain�BD and a PML�PM, with the attenuation functions in Eq. (4.2)
chosen asf e

1 D f
p

1 D f , wheref is linear in the PML, andf e
2 D f

p
2 D 0. For comparison,

the layer is also modelled using viscous dashpots [16], with consistent dashpots placed at the edge
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x1 D LC LP , and the entire domain�BD [�PM taken to be acoustic. A uniform finite-element
mesh of square four-node bilinear isoparametric elements is used to discretise the entire bounded
domain for either model, with 16 elements in the depth of the waveguide.
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Figure 4.1. Transient modal force due to dynamic pressure in two-dimensional waveguide,
computed using a PML model as well as a viscous dashpot model;L D d=2, LP D d ,
f1.x1/ D 10hx1 � Li=LP ; � D 1, � D 1; td D 30, !f D 1:85.

Figure 4.1 show the transient modal force due to the pressure in the waveguide [Eq. (4.22)], com-
puted using the PML model and the viscous dashpot model, against results from an extended-mesh
model used as a benchmark; this extended-mesh model is a viscous-dashpot model of depthd

and length60d . Based on a comparison of the frequency-domain responses of the PML and the
viscous dashpot models, the values of!f were chosen as the excitation frequencies where the two
responses are significantly different. The results from the PML model follow the extended-mesh
results closely, even though the domain is small enough that the viscous-dashpot boundary gener-
ates spurious reflections, manifested in the higher response amplitudes. Moreover, these accurate
results from the PML model are obtained at a low computational cost: the cost of the PML model
is observed to be approximately1:4 times that of the dashpot model, which itself is extremely
inexpensive.

4.2.4 Caveat emptor

The time-domain equations for the PML were obtained by a special choice of the stretching
functions — Eq. (4.2) — that enabled transformation of the frequency domain PML equations
into the time domain. However, these stretching functions differ from those used for frequency-
domain analysis, given by Eq. (3.26); these stretching functions produced accurate results in the
frequency domain, even for problems with significant evanescent modes in their wave motion
[Sec. 3.6.1].

Because the real part of the complex-valued stretching function serves to attenuate evanescent
waves, and because the difference between the time-domain and the frequency-domain stretching
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functions is only in the real part, it is valid to ask whether thetime-domain stretching functions are
adequate for evanescent waves. Note that it is difficult to employ the frequency-domain stretch-
ing function [Eq. (3.26)] towards a time-domain model because the frequency-dependence of the
real part of the stretching function is not through the factor i!. Because the PML approach is
fundamentally a frequency-domain approach, it is valid to test the adequacy of the time-domain
stretching function [Eq. (4.2)] by using it to obtain frequency-domain results.
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Figure 4.2. Harmonic modal force due to dynamic pressure in two-dimensional waveguide, com-
puted using PML models with two different forms of the stretching function: “PML” from a stretch-
ing function that can be implemented in the time domain, and “FD PML” from a stretching function
that is more accurate but is only suitable for the frequency domain; normalised against its value at
a0 D 0; L D d=2, LP D d , f1.x1/ D 10hx1 �Li=LP ; � D 1, � D 1; hxi WD .x C jxj/=2.

Figure 4.2 compares the harmonic modal force due to the pressure in the waveguide [Eq. (3.25)]
obtained from PML models using the two stretching functions, against an analytical solution [77].
The mesh used for the PML models is the same as those used for time-domain analysis; the re-
sults are obtained using the frequency-domain FE formulation presented earlier 3.5. It is seen
that the time-domain stretching function [Eq. (4.2)] produces results — denoted by “PML” —
that closely match results from the frequency-domain-only stretching function [Eq. (3.26)], de-
noted by “FD PML”. This suggests that for this system, the time-domain stretching functions are
adequate for attenuating the evanescent modes. However, it should be noted that this adequacy
may depend on the particular excitation-response combination under consideration: the dynamic
stiffness of a semi-infinite elastic layer undergoing anti-plane motion — essentially an “inverse”
of the excitation-response studied above — is computed inaccurately for higher frequencies if the
time-domain stretching function is used [79].
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4.3 Three-dimensional problems

4.3.1 Time-domain equations for the PML

For three-dimensional problems, the stretch tensorƒ may still be expressed as in Eq. (4.3a), but
with Fe0 andFp0 now given by

Fe0 WD diag
�

1C f e
1 .x

0
1/; 1C f e

2 .x
0
2/; 1C f e

3 .x
0
3/

�

;

Fp0 WD diag
�

f
p

1 .x
0
1/; f

p
2 .x

0
2/; f

p
3 .x

0
3/

�

� C=b
(4.23)

However, the productJƒ is now given by

Jƒ D QFeeC 1

i!
QFep� 1

!2
QFpp (4.24)

where
QFeeD Q QFee0QT ; QFepD Q QFep0QT ; QFppD Q QFpp0QT (4.25)

with

QFee0 WD diag
�

f ee
23; f

ee
13; f

ee
12

�

QFep0 WD diag
�

f
ep

23 ; f
ep

13 ; f
ep

12

�

� C=b

QFpp0 WD diag
�

f
pp

23 ; f
pp

13 ; f
pp

12

�

� .C=b/2
(4.26a)

wheref ee
ij etc. are defined as

f ee
ij WD

�

1C f e
i .x

0
i/

� �

1C f e
j .x

0
j/

�

f
ep

ij WD
�

1C f e
i .x

0
i/

�

f
p

j .x
0
j/C

�

1C f e
j .x

0
j/

�

f
p

i .x
0
i/ (4.26b)

f
pp

ij WD f
p

i .x
0
i/f

p
j .x

0
j/

Equation (4.1c) is premultiplied by i!ƒ�1, Eqs. (4.2), (4.3a) and (4.24) are substituted into Eq. (4.1),
and the inverse Fourier transform is applied to the resultant to obtain the time-domain equations
for the three-dimensional acoustic PML:

div Q' D �fM Rp C �
C

b
fC Pp C �

�

C

b

�2

fK p C �
�

C

b

�3

fH P (4.27a)

' D �
 (4.27b)

Fe P
 C Fp
 D grad Pp (4.27c)

where

P WD
Z t

0

p d� (4.28)

Q' WD QFee'C QFep˚ C QFpp Q̊ ; with ˚ WD
Z t

0

' d�; Q̊ WD
Z t

0

˚ d� (4.29)
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and

fM WD
�

1C f e
1 .x

0
1/

� �

1C f e
2 .x

0
2/

� �

1C f e
3 .x

0
3/

�

fC WD
�

1C f e
1 .x

0
1/

� �

1C f e
2 .x

0
2/

�

f
p

3 .x
0
3/C

�

1C f e
1 .x

0
1/

� �

1C f e
3 .x

0
3/

�

f
p

2 .x
0
2/

C
�

1C f e
2 .x

0
2/

� �

1C f e
3 .x

0
3/

�

f
p

1 .x
0
1/ (4.30)

fK WD f p
1 .x

0
1/f

p
2 .x

0
2/

�

1C f e
3 .x

0
3/

�

C f p
2 .x

0
2/f

p
3 .x

0
3/

�

1C f e
1 .x

0
1/

�

C f p
1 .x

0
1/f

p
3 .x

0
3/

�

1C f e
2 .x

0
2/

�

fH WD f p
1 .x

0
1/f

p
2 .x

0
2/f

p
3 .x

0
3/

The application of the inverse Fourier transform to obtain˚ assumes thatN'.! D 0/ D 0.

4.3.2 Finite-element implementation

Equation (4.27) is implemented using a standard displacement-based finite-element approach [71].
The weak form of Eq. (4.27a) is derived by multiplying it with an arbitrary weighting function
w residing in an appropriate admissible space, and then integrating over the entire computational
domain� using integration-by-parts and the divergence theorem to obtain

Z

�

�fM w Rp d�C
Z

�

�
C

b
fCw Pp d�C

Z

�

�

�

C

b

�2

fK wp d�

C
Z

�

�

�

C

b

�3

fHwP d�C
Z

�

gradw � Q' d� D
Z

�

w Q' � n d� (4.31)

where� WD @� is the boundary of� andn is the unit outward normal to� . The weak form is
first spatially discretised by interpolatingp andw element-wise in terms of nodal quantities using
appropriate nodal shape functions. This leads to the system of equations

s RpC b Pp C hp CHPC fint D fext (4.32)

whereP is the time-integral ofp, H is the coefficient matrix associated withP, and the other
terms have the same connotation as in Eq. (4.10). The element-level constituent matrices ofs, b,
h andH are, respectively,

se D
Z

�e

�fMN T N d�; be D
Z

�e

�
C

b
fCN T N d�

he D
Z

�e

�

�

C

b

�2

fKN T N d�; He D
Z

�e

�

�

C

b

�3

fHN T N d�

(4.33)

whereN is the row vector of element-level nodal shape functions, and the element-level internal
force term is given by Eq. (4.11b), but withQ' given by Eq. (4.29).
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Equations (4.27b) and (4.27c) are discretised to obtain Eqs. (4.14) and (4.13), respectively, but
with Fe andFp defined using Eq. (4.23). Furthermore,˚nC1 is approximated as in Eq. (4.15), and
Eq. (4.29c) is used to approximateQ̊nC1 as

Q̊
nC1 D Q̊n C˚nC1�t (4.34)

Equations (4.15) and (4.34) are substituted in Eq. (4.29a) to obtain

Q'nC1 D QF'nC1 C QFec˚n C QFpp Q̊
n (4.35)

where

QF WD QFeeC QFep�t C QFpp�t2

QFec WD QFepC QFpp�t
(4.36)

The internal force term is given by Eq. (4.17), its linearisation by Eq. (4.18), and the consequent
tangent matrix by Eq. (4.20) but withD now given by

D D � QF
�

Fe

�t
C Fp

��1

(4.37)

Finally, the time-integral ofp is approximated as

PnC1 D Pn C pnC1�t (4.38)

Thus the term involvingP in Eq. (4.32) may be linearised as

�.HPnC1/ D .H�t/�pnC1 (4.39)

A skeleton of the algorithm for computing the element-level effective internal force and tangent
matrix is given in Box 4.2. The matrixLbe is symmetric becauseD is symmetric by the virtue of
the coaxiality of the constituent matrices. The other system matrices,s, b, h andH are clearly
symmetric by Eq. (4.33). Moreover, because all these matrices are of the same form as the system
matrices for an elastic medium, the effective tangent matrix (say, as found in the Newmark scheme)
of the entire computational domain will be positive definite iff e

i andf p
i are positive. Furthermore,

since all the system matrices,s, b, Lb, h andH that constitute the tangent matrix are independent
of p, this is effectively a linear model.

4.3.3 Numerical examples

Consider a three-dimensional acoustic waveguide in the form of a semi-infinite prismatic channel
of trapezoidal cross-section, as shown in Fig. 3.4a, with pressures governed by Eq. (3.1) with the
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Box 4.2. Computing effective force and tangent for 3D acousticPML element.

1. Compute system matricesse, be, he and He [Eq. (4.33)].
2. Compute internal forcef e

nC1 [Eq. (4.17)].
Use
nC1 [Eq. (4.13)],'nC1 [Eq. (4.14)] andQ'nC1 [Eq. (4.35)].

3. Compute tangent matrixLbe [Eq. (4.20)] usingD [Eq. (4.37)].
4. Compute effective internal forceQf e

nC1 and tangent matrixQhe:

Qf e
nC1 D se RpnC1 C be PpnC1 C hepnC1 CHe

PnC1 C f e
nC1

Qhe D ˛h .h
e CHe�t/C ˛b

�

be C Lbe
�

C ˛ss
e

where, for example,

˛h D 1; ˛b D



ˇ�t
; ˛sD

1

ˇ�t2

for the Newmark method.
Note: The tangent matrixQhe is independent of the solution, and thus has to be computed
only once. However, the internal forcef e

nC1 has to be re-computed at each time-step be-
cause it is dependent on the solution at past times.

following boundary conditions:

p.x; t/ D 0 at x2 D d (4.40a)

@p

@n
D 0 at lateral and bottom surfaces (4.40b)

@p

@x1

D ��u0.t/ at x1 D 0 (4.40c)

and a radiation condition forx1 ! 1, where@=@n is the normal derivative at a surface. The
response of the system is calculated as the force atx1 D 0:

F.t/ D
Z

fx1D0g

p.x1 D 0; t/ dx2dx3 (4.41)

This semi-infinite channel is modelled using the bounded-domain-PML model shown in Fig. 3.4b,
composed of a bounded domain�BD and a PML�PM, with the attenuation functions in Eq. (4.2)
chosen asf e

1 D f
p

1 D f , wheref is linear in the PML, andf e
2 D f

p
2 D 0, f e

3 D f
p

3 D 0.
For comparison, the layer is also modelled using viscous dashpots [16], with consistent dashpots
placed at the edgex1 D L C LP , and the entire domain�BD [�PM taken to be acoustic. A
uniform finite-element mesh of eight-node trilinear isoparametric elements is used to discretise
the entire bounded domain for either model, with 20 elements across and along the depth of the
channel, and 20 elements per unit length in thex1 direction.
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Figure 4.3. Transient force due to dynamic pressure in three-dimensional waveguide, computed
using a PML model as well as a viscous dashpot model;L D d=2, LP D d , f1.x1/ D 10hx1 �
Li=LP ; � D 1, � D 1; td D 30, !f D 2.

Figure 4.3 show the transient modal force due to the pressure in the waveguide [Eq. (4.41)], com-
puted using the PML model and the viscous dashpot model, against results from an extended-mesh
model used as a benchmark; this extended-mesh model is a viscous-dashpot model of depthd

and length40d . Based on a comparison of the frequency-domain responses of the PML and the
viscous dashpot models, the values of!f were chosen as the excitation frequencies where the two
responses are significantly different. The results from the PML model follow the extended-mesh
results closely, even though the domain is small enough that the viscous-dashpot boundary gener-
ates spurious reflections, manifested in the higher response amplitudes. Moreover, these accurate
results from the PML model are obtained at a low computational cost: the cost of the PML model
is observed to be approximately1:6 times that of the dashpot model, which itself is extremely
inexpensive.

Figure 4.4 demonstrates the adequacy of the time-domain stretching functions by comparing the
harmonic force due to the pressure in the waveguide [Eq. (3.28)] obtained from frequency-domain
PML models using two different stretching functions. It is seen that the time-domain stretch-
ing function [Eq. (4.2)] produces results — denoted by “PML” — that match results from the
frequency-domain-only stretching function [Eq. (3.26)], denoted by “FD PML”, fora0 / 7 but
show slight inaccuracies for higher frequencies.
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Figure 4.4. Harmonic force due to dynamic pressure in three-dimensional waveguide, computed
using PML models with two different forms of the stretching function: “PML” from a stretching
function that can be implemented in the time domain, and “FD PML” from a stretching function
that is more accurate but is only suitable for the frequency domain; normalised against its value at
a0 D 0; L D d=2, LP D d , f1.x1/ D 10hx1 �Li=LP ; � D 1, � D 1; hxi WD .x C jxj/=2.





5 TIME-HARMONIC ELASTIC WAVES

5.1 Introduction

This chapter uses the groundwork laid by the previous chapters to develop the PML model — and
its finite-element implementation — for time-harmonic elastic waves.

5.2 Elastic medium

Consider a homogeneous isotropic elastic medium undergoing motion in the absence of body
forces. The displacementsu.x; t/ of such a medium are governed by the following equations:

X

j

@�ij

@xj

D � Rui (5.1a)

�ij D
X

k;l

Cijkl "kl (5.1b)

"ij D
1

2

�

@ui

@xj

C @uj

@xi

�

(5.1c)

where Cijkl written in terms of the Kronecker deltaıij is

Cijkl D
�

� � 2

3
�

�

ıijıkl C �
�

ıikıjl C ıilıjk

�

(5.2)

�ij and"ij are the components of� and", the stress and infinitesimal strain tensors, Cijkl are the
components ofC, the material stiffness tensor; the indicesi , j , k, l range over the spatial di-
mensions of the problem;� is the bulk modulus,� the shear modulus, and� the mass density of
the medium. For two-dimensional problems, Eq. (5.1) describes either plane-strain or plane-stress
motion, following an appropriate definition of�.

If the medium is subjected to a time-harmonic excitation (through boundary conditions) then the
displacementu is time-harmonic of the formu.x; t/ D Nu.x/ exp.i!t/, where! is the frequency
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of excitation, withNu.x/ governed by the following equation

X

j

@ N�ij

@xj

D �!2� Nui (5.3a)

N�ij D
X

k;l

Cijkl N"kl (5.3b)

N"ij D
1

2

�

@ Nui

@xj

C @ Nuj

@xi

�

(5.3c)

whereN�ij and N"ij are the harmonic amplitudes of�ij and"ij , respectively.

On an unbounded domain, Eq. (5.3) admits body-wave solutions [80] in the form of 1) P waves:

Nu.x/ D q exp
�

�ikp x � r
�

(5.4a)

wherekp D !=cp, with cp D
p

.� C 4�=3/=� the P-wave speed,r is a unit vector denoting the
propagation direction, andq D ˙r the direction of particle motion, and 2) S waves:

Nu.x/ D q expŒ�iks x � r � (5.4b)

whereks D !=cs, with cs D
p

�=� the S-wave speed, andq � r D 0. Equation (5.1) also
admits interface-guided waves, such as Rayleigh waves and Stoneley waves. Rayleigh waves
propagate along a free surface, and Stoneley waves may propagate along the interface of two semi-
infinite elastic media. Both types of waves propagate with exponentially-decreasing amplitude in
the direction normal to and away from the surface or interface, respectively.

A visco-elastic medium is described by the above equations, but with complex-valued moduli
�� D �.1 C 2i�/ and�� D �.1 C 2i�/, with � the hysteretic damping ratio, and corresponding
complex-valued wave speeds.

5.3 Perfectly matched medium and layer

The summation convention is abandoned in this section.

A PMM for elastodynamic motion is defined to be a medium governed by the following equa-
tions:

X

j

1

�j.xj/

@ N�ij

@xj

D �!2� Nui (5.5a)

N�ij D
X

k;l

Cijkl N"kl (5.5b)

N"ij D
1

2

�

1

�j.xj/

@ Nui

@xj

C 1

�i.xi/

@ Nuj

@xi

�

(5.5c)
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where�i are nowhere-zero, continuous, complex-valued coordinate stretching functions; the con-
stitutive relation Eq. (5.5b) is the same as for the elastic medium. Consequently, for two-dimensional
problems, Eq. (5.5) describes either plane-strain or plane-stress motion, following an appropriate
definition of �. A (visco-)elastic medium corresponds to�i.xi/ � 1. Equation (5.5) is defined
independently of, but motivated by, the definition ofQxi given by Eq. (3.4).

The continuity of�i can be used to show that on an unbounded domain, Eq. (5.5) admits solutions
of the same form as Eq. (5.4), but withx replaced byQx. A P-type wave solution is of the form

Nu.x/ D q exp
�

�ikp Qx � r
�

(5.6a)

with q D ˙r, and an S-type wave solution is of the form

Nu.x/ D q expŒ�iks Qx � r � (5.6b)

with q � r D 0. It can be argued that for appropriately defined�i and appropriate boundary
conditions, Eq. (5.5) also admits solutions of the forms of Rayleigh and Stoneley waves.

These PMMs exhibit the perfect matching property: if two PMMs with different�i are placed
adjacent to each other, with the functions�i such that they match at the interface of the two media,
then any propagating waveform will pass through the interface without generating any reflected
wave. The argument for this claim is the same as that for PMMs for acoustic waves.

A choice of�i of the form in Eq. (3.8), but withks replacingk, leads to attenuated solutions of the
form

Nu.x/ D exp

"

� cs

cp

X

i

Fi.xi/ri

#

q exp
�

�ikp x � r
�

(5.7a)

for P-type waves and

Nu.x/ D exp

"

�
X

i

Fi.xi/ri

#

q expŒ�iks x � r � (5.7b)

for S-type waves ifFi.xi/ > 0 andri > 0, with Fi defined in Eq. (3.10); the attenuation is inde-
pendent of the frequency ifri is. It can be argued that suitable choices of�i lead to Rayleigh-type
(and Stoneley-type) wave solutions that are attenuated in the direction of their propagation.

The absorptive and attenuative properties of the PMM can be used to define an absorbing layer —
the PML — adjacent to a bounded domain, e.g., as shown in Fig. 3.1b. The argument for this claim
is as for acoustic waves.

The absorptive capability of such a layer is analysed by studying the reflection of plane waves
from the fixed boundary. Consider plane-strain motion in the domain shown in Fig. 3.1b, with
�BD governed by Eq. (5.3) and�PM governed by Eq. (5.5), with�1 of the form in Eq. (3.8),
satisfyingf1.0/ D 0, and�2 � 1. Furthermore, consider a P-wave with unit amplitude as it enters
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the PML at an angle of incidence� . The incident wave will be reflected from the boundary as a
P-type wave and an S-type wave, with the total wave motion represented as

Nu.x/ D q.I /
p exp

h

�ikp Qx � r.I /
p

i

C Rppq
.R/
p exp

h

�ikp Qx � r.R/
p

i

C Rspq
.R/
s exp

h

�iks Qx � r.R/
s

i (5.8)

where thes andp subscripts refer to S-type and P-type waves, respectively, and superscripts.I /

and .R/ refer to incident and reflected waves, respectively. ImposingNu.x/ � 0 for x1 D LP

and for allx2, and expressing the directions of propagation and of particle motion in terms of� ,
gives

jRppj D
cos.� C �s/

cos.� � �s/
exp

�

�2
cs

cp

F1.LP / cos�

�

(5.9a)

jRspj D
sin2�

cos.� � �s/
exp

�

�F1.LP /

�

cs

cp

cos� C cos�s

��

(5.9b)

with �s given by

sin�s D
cs

cp

sin�

a similar analysis can be performed to determine the reflection coefficients due to an incident S-
type wave. The amplitudes of the reflected P- and S-type waves as they exit the PML, given by
jRppj andjRspj, respectively, are controlled by the choice of parametersf1 andLP — indepen-
dently of the size of the bounded domain to which the PML is adjacent — and are also influenced
by the angle of incidence. This suggests that the bounded domain may be restricted to the region of
interest in the analysis, thus lowering the computational cost, if the parameters and the orientation
of the PML are chosen appropriately.

The above arguments considered a two-dimensional problem only for the sake of illustration;
the same reasoning may be extended to three-dimensional problems to reach an identical con-
clusion.

5.4 Finite-element implementation

A finite-element implementation of this PMM is obtained by expressing the PMM equations in a
tensorial form. Consider two rectangular Cartesian coordinate systems for the plane: 1) anfxig
system, with respect to an orthonormal basisfeig, and 2) anfx0

ig system, with respect to another
orthonormal basisfe0

ig, with the two bases related by the rotation-of-basis matrixQ, with compo-
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nentsQij WD ei � e0
j . Equation (5.5) can be re-written in the basisfe0

ig as (no summation)

X

j

1

�j.x
0
j/

@ N� 0
ij

@x0
j

D �!2� Nu0
i (5.10a)

N� 0
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X

k;l
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ijkl N"0

kl (5.10b)
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1
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0
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@ Nu0
i

@x0
j

C 1

�i.x
0
i/

@ Nu0
j

@x0
i

#

(5.10c)

where the various primed quantities represent the components in the basisfe0
ig of the corresponding

vector or tensor. This represents a PMM where waves are attenuated in thee0
1 ande0

2 directions.
On multiplying Eq. (5.10a) withJ, given by [Eq. (3.15)]

J D
(

�1.x
0
1/�2.x

0
2/ for two-dimensional problems

�1.x
0
1/�2.x

0
2/�3.x

0
3/ for three-dimensional problems

and using the fact that�i is a function ofx0
i only, Eq. (5.10) can be re-written in matrix notation

as

�

N� 0Jƒ0
�

r
0 D �!2�J Nu0 (5.11a)

N� 0 D C0 N"0 (5.11b)

N"0 D 1

2

h

�

Nu0
r

0T
�

ƒ0 Cƒ0T
�

Nu0
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0T
�T

i

(5.11c)

where
N� 0 WD

�

N� 0
ij

�

; N" WD
�

N"ij

�

; Nu0 WD
˚

Nu0
i

	

; r
0 WD

˚

@=@x0
i

	

(5.12)

andƒ0 is given by [Eq. (3.17)]

ƒ0 D
(

diag
�

1=�1.x
0
1/; 1=�2.x

0
2/

�

for two-dimensional problems

diag
�

1=�1.x
0
1/; 1=�2.x

0
2/; 1=�3.x

0
3/

�

for three-dimensional problems

Equation (5.11b) is understood in indicial notation. Equation (5.11) can be transformed to the basis
feig to obtain

. N�Jƒ/r D �!2�J Nu (5.13a)

N� D C N" (5.13b)

N" D 1

2

h

�

Nur
T

�

ƒCƒT
�

Nur
T

�T
i

(5.13c)

where the unprimed quantities are obtained from the corresponding primed quantities in Eq. (5.11)
via the usual change-of-basis rules for vector and tensor components, e.g.,ƒ is given by Eq. (3.19).
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In tensorial notation, Eq. (5.13) becomes

div . N�Jƒ/ D �!2�J Nu (5.14a)

N� D C N" (5.14b)

N" D 1

2

h

.grad Nu/ƒCƒT .gradNu/T
i

(5.14c)

The weak form of Eq. (5.14a) is derived by taking its inner product with an arbitrary weighting
function w residing in an appropriate admissible space, and integrating the resultant scalar over
the entire computational domain� using integration-by-parts and the divergence theorem to ob-
tain

Z

�

Q" W N� Jd� � !2

Z

�

�w � Nu Jd� D
Z

�

w � N�ƒn Jd� (5.15)

with � WD @� the boundary of� andn the unit outward normal to it. The symmetry ofN� has
been used to obtain the first integral on the left hand side, with

Q" D 1

2

h

.gradw/ƒCƒT .gradw/T
i

(5.16)

Assuming element-wise interpolations ofNu andw in terms of shape functionsN , imposing Eqs. (5.14b)
and (5.14c) point-wise in Eq. (5.15), and restricting the integrals to the element domain� D �e

gives the stiffness and mass matrices for a PML element. In terms of nodal submatrices, withI

andJ the node numbers, these are

ke
IJ D

Z

�e

BT
I DBJ Jd� (5.17a)

me
IJ D

Z

�e

�NI NJ Jd� I (5.17b)

whereI is the identity matrix of the order of the spatial dimension of the problem, and
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NI 2 NI 1

3

5 (5.18a)

for two-dimensional problems, while
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(5.18b)
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for three-dimensional problems, with

NIi WD ƒijNI;j (5.19)

In Eq. (5.17), the functions�i in B and inJ are defined globally on the computational domain, not
element-wise. The right hand side in Eq. (5.15) can be ignored by assuming that the traction-like
term �ƒn D 0 on a free boundary of the PMM. Note that these system matrices for the PMM
could also have been obtained by applying coordinate-stretching to the corresponding matrices for
the elastic medium.

The FE matrices in Eq. (5.17) are symmetric, but intrinsically complex-valued and frequency-
dependent. Hence, the system matrices for� will be complex, symmetric, and sparse, the PML
contributions to will have to recomputed for each frequency.

5.5 Numerical results

5.5.1 Two-dimensional problems

Numerical results are presented for the classical soil-structure interaction problems of a rigid strip-
footing on a i) half-plane, ii) layer on a half-plane, and iii) layer on a rigid base.

Figure 5.1a shows a cross section of a rigid strip-footing of half-widthb with its three degrees-
of-freedom (DOFs) identified — vertical (V ), horizontal (H ), and rocking (R) — supported by a
homogeneous isotropic (visco-)elastic half-plane with shear modulus�, mass density�, Poisson’s
ratio�, and hysteretic damping ratio� for the visco-elastic medium. LetNPi and N�i, i 2 fV;H;Rg,
denote the amplitudes of the harmonic force and of the harmonic displacement, respectively, along
thei -th DOF. The two are related through the dynamic flexibility matrixF1.a0/ (a0 D !b=cs) as
follows:

8

<

:

N�V

N�H

b N�R

9

=

;

D F1.a0/

8

<

:

NPV

NPH

NPR=b

9

=

;

D

2

4

FVV.a0/ 0 0

0 FHH.a0/ FHR.a0/

0 FRH.a0/ FRR.a0/

3

5

8

<

:

NPV

NPH

NPR=b

9

=

;

: (5.20)

This unbounded-domain system is modelled using the bounded-domain-PML model shown in
Fig. 5.1b, composed of a bounded domain�BD and a PML�PM. The stretching functions�i

are chosen as in Eq. (3.26), with the attenuation functions chosen to be linear in the PML, follow-
ing Sec. 2.6. Note that the choice of attenuation functions, especially in the corner regions, follows
naturally from the requirements thatfi � 0 in �BD, fi be a function ofxi only, and thatfi be
continuous in the entire computational domain. A finite-element mesh of rectangular four-node
bilinear isoparametric elements are used to discretise the entire bounded domain. The mesh is
chosen to be adequately dense for the range of frequencies considered, and is graded to capture ad-
equately sharp variations in stresses near the footing. For purposes of comparison, the half-space is
also modelled using a viscous-dashpot model [15], wherein the entire domain�BD [�PM is taken
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Figure 5.1. (a) Cross-section of a rigid strip of half-widthb on a homogeneous isotropic
(visco-)elastic half-plane; (b) a PML model.

to be (visco-)elastic and consistent viscous-dashpot elements replace the fixed outer boundary. The
mesh used for the dashpot model is thus comparable to that used for the PML model.

Figure 5.2 presents the dynamic flexibility coefficients computed for an elastic medium from the
PML model and from the viscous-dashpot model, against “exact” analytical results [81]. The
domain size parameters are chosen to beL D 3b=2, h D b=2, LP D b. Note that the bounded
domain chosen is small, extending only uptob=2 on either side of the footing and below it, and the
PML width equal tob, the half-width of the footing. Using this small domain, the results obtained
from the PML model are highly accurate, even though they are obtained at a low computational
cost: the cost of the PML model is similar to that of the dashpot model. The gross inaccuracy of the
results from the dashpot model emphasizes the small size of the computational domain. Figure 5.3
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compares results for a visco-elastic medium with� D 0:05, computed for the same meshes used
for the elastic medium, with “exact” semi-analytical results [82]. The results from the PML model
are highly accurate, even though the domain is too small for the dashpot model to produce accurate
results for this visco-elastic medium.

Figure 5.4a shows a cross section of the rigid strip supported by a visco-elastic layer on a half-
plane, and Fig. 5.4b shows a corresponding PML model where�i are of the form in Eq. (3.26) with
linear attenuation functions in the PMLs. The moduli for the PMLs employed for the layer and the
half-plane are set to the moduli for the corresponding elastic media. For comparison, a viscous-
dashpot model is also employed, where the entire bounded domain is taken to be visco-elastic, and
consistent dashpots replace the fixed outer boundary. Figure 5.5 compares results from the PML
model and from the dashpot model against semi-analytical results [83, 84]. The results from the
PML model are reasonably accurate, even though the computational domain is small and the cost is
comparable to that of the dashpot model. The smallness of the domain is evident in the inaccuracy
of results from the dashpot model, especially for vertical and for horizontal motion.

Figure 5.6a shows a cross section of the rigid strip supported by a visco-elastic layer on a rigid
base, and Fig. 5.6b shows a corresponding PML model where�i are of the form in Eq. (3.26)
with f1.x1/ D 0 andf2.x2/ linear in the PML. Figure 5.7 presents results from the PML model
and from a comparable viscous-dashpot model against semi-analytical results [83, 84]. The PML
model produces reasonably accurate results at a cost comparable to that of the dashpot model. The
boundedness of the domain in the horizontal direction is made prominent by the gross inaccuracy of
results forFHH as computed from the dashpot model. Notably, accurate PML results are obtained
for this waveguide system with significant evanescent modes. Thus, the stretching function of
Eq. (3.26) is adequate for these evanescent modes, but withfi.LP / D 20, rather than the value
of 10 used for other examples in this section; a value offi.LP / D 10 for this problem produces
results that are slightly less accurate.

5.5.2 Three-dimensional problems

A numerical evaluation of the three-dimensional time-harmonic elastic PML was considered, sim-
ilar to that for the two-dimensional problem above, by presenting results for the classical soil-
structure interaction problem of a rigid circular footing on a half-space [85–88]. However, such
an evaluation proved intractable because no existing efficient equation solvers were found for di-
rectly solving the large complex, symmetric system of equations that arise from the PML model.
Consequently, the three-dimensional PML model is presented above serves only as a record of the
formulation, to be used to solve three-dimensional problems at such a time when efficient solvers
are readily available. It should be noted that this formulation has been used to succesfully anal-
yse MEMS systems [89], but that required the in-house development of special reduced-model
solvers.
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Figure 5.2. Dynamic flexibility coefficients of rigid strip on elastic half-plane computed using
a PML model as well as a viscous dashpot boundary model;L D 3b=2, h D b=2, LP D b,
f1.x1/ D 10hx1 � hi=LP , f2.x2/ D 10hjx2j � Li=LP ; hxi WD .x C jxj/=2; � D 1, � D 0:25

(� D 1:67).
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Figure 5.3. Dynamic flexibility coefficients of rigid strip on visco-elastic half-plane computed
using a PML model as well as a viscous dashpot boundary model;L D 3b=2, h D b=2, LP D b,
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Figure 5.6. (a) Cross-section of the rigid strip of half-widthb on a homogeneous isotropic visco-
elastic layer on rigid base; (b) a PML model.
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6 TRANSIENT ELASTIC WAVES

6.1 Introduction

The previous chapter developed the PML equations for the time-harmonic elastic wave equation,
which is obtained by a Fourier transform of the transient elastic wave equation [Eq. (5.1)]. This
chapter first develops the PML equations for transient elastic waves by applying the inverse Fourier
transform to the time-harmonic elastic PML equations, and then provides a finite-element imple-
mentation of these equations.

Recall that, for both two- and three-dimensional problems, the equations for the time-harmonic
elastic PML are [cf. Eq. (5.14)]:

div . N�Jƒ/ D �!2�J Nu (6.1a)

N� D .1C 2ia0�/C N" (6.1b)

N" D 1

2

h

.grad Nu/ƒCƒT .gradNu/T
i

(6.1c)

where the specific definitions ofƒ [Eqs. (3.19), (3.17)] andJ [Eq. (3.15)] distinguish between the
two classes of problems. Equation (6.1) explicitly incorporates Voigt material damping through the
correspondence principle in terms of a damping ratio� and a non-dimensional frequencya0 D ksb,
whereb is a characteristic length of the physical problem. This damping model is chosen over the
traditional hysteretic damping model because the latter is non-causal [90]; implementation of a
causal hysteretic model in a PML formulation is beyond the scope of this report.

Choosing the stretching functions to be of the form in Eq. (4.2), witha0 defined as above, allows
transformation of Eq. (6.1) into the time domain. However, substituting Eq. (4.2) in Eq. (6.1)
throughƒ andJ result in different sets of time-domain equations for two- and three-dimensional
problems that are not easily amenable to expression in an unified form in a manner similar to
Eq. (6.1) for time-harmonic problems. These two sets of equations are therefore discussed sepa-
rately in this chapter.

6.2 Two-dimensional problems

6.2.1 Time-domain equations for the PML

Equation (6.1c) is premultiplied by i!ƒ�T and postmultiplied byƒ�1, Eqs. (4.2) and (4.3) are
substituted into Eq. (6.1), and the inverse Fourier transform is applied to the resultant to obtain the
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time-domain equations for the two-dimensional elastic PML:

div
�

� QFeC† QFp
�

D �fm RuC �
cs

b
fc PuC

�

b2
fku (6.2a)

� D C

�

"C 2�b

cs

P"
�

(6.2b)

FeT P"FeC
�

FpT
"FeC FeT

"Fp
�

C FpT
EFp D

1

2

h

FeT .grad Pu/C .gradPu/T Fe
i

C 1

2

h

FpT .gradu/C .gradu/T Fp
i

(6.2c)

where QFe, QFp, Fe andFp are as in Eqs. (4.4) and (4.5), but withcs replacingC , fm, fc andfk are
as in Eq. (4.8), and

† WD
Z t

0

� d�; E WD
Z t

0

" d� (6.3)

Application of the inverse Fourier transform to obtain† andE assumes thatN� .! D 0/ D 0 and
N".! D 0/ D 0.

6.2.2 Finite-element implementation

Equation (6.2) is implemented using a standard displacement-based finite-element approach [71].
The weak form of Eq. (6.2a) is derived by taking its inner product with an arbitrary weighting
functionw residing in an appropriate admissible space, and then integrating over the entire com-
putational domain� using integration-by-parts and the divergence theorem to obtain

Z

�

�fmw � Ru d�C
Z

�

�
cs

b
fcw � Pu d�C

Z

�

�

b2
fkw � u d�

C
Z

�

Q"e W � d�C
Z

�

Q"p W † d� D
Z

�

w �
�

� QFeC† QFp
�

n d� (6.4)

where� WD @� is the boundary of� andn is the unit outward normal to� . The symmetry of�
and† is used to obtain the last two integrals on the left-hand side, with

Q"e WD 1

2

h

.gradw/ QFeC QFeT .gradw/T
i

; Q"p WD 1

2

h

.gradw/ QFpC QFpT .gradw/T
i

(6.5)

The weak form is first spatially discretised by interpolatingu andw element-wise in terms of nodal
quantities using appropriate nodal shape functions. This leads to the system of equations

m Rd C c Pd C kd C fint D fext (6.6)

wherem, c andk are the mass, damping and stiffness matrices, respectively,d is a vector of nodal
displacements,fint is a vector of internal force terms, andfext is a vector of external forces. The
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system matrices are assembled from element-level constituent matrices, given in terms of their
IJ-th nodal submatrices as, respectively,

me
IJ D

Z

�e

�fmNI NJ d�I; ce
IJ D

Z

�e

�
cs

b
fcNI NJ d�I; ke

IJ D
Z

�e

�

b2
fkNI NJ d�I (6.7a)

whereNI is the shape function for nodeI andI is the identity matrix of size2 � 2. The element-
level internal force term is given by

f e D
Z

�e

QBeT O� d�C
Z

�e

QBpT O† d� (6.7b)

where QBe and QBp are given in terms of their nodal submatrices as

QBe
I WD

2

4

QN e
I 1 �
� QN e

I 2
QN e
I 2

QN e
I 1

3

5 ; QBp
I WD

2

4

QN p
I 1 �
� QN p

I 2
QN p
I 2

QN p
I 1

3

5 (6.8)

with
QN e

Ii WD QFe
ij NI;j and QN p

Ii WD QF
p
ij NI;j (6.9)

and

O� WD

8

<

:

�11

�22

�12

9

=

;

(6.10)

with O† the time-integral ofO� . Note that the above vector representation of the tensor� assumes
its symmetry, which requires a minor symmetry ofC; because the PML medium is unphysical, a
physically-motivated axiom — the balance of angular momentum — cannot be employed to show
the symmetry of� . The attenuation functionsf e

i andf p
i are defined globally on the computational

domain, not element-wise. It is conveniently assumed that there is no contribution tofext from a
free boundary of the PML.

Solution of the equations of motion [Eq. (6.6)] using a time-stepping algorithm requires calculating
�nC1 and†nC1 at tnC1, to calculatef e

nC1, and also a consistent linearisation off e
nC1 at dnC1.

Towards this, the approximations

P".tnC1/ �
"nC1 � "n

�t
; E.tnC1/ � En C "nC1�t (6.11)

are used in Eq. (6.2c) to obtain

O"nC1 D
1

�t

�

B�vnC1 C B%dnC1 C
1

�t
OF � O"n � OF% OEn

�

(6.12)

wherevnC1 � Pde.tnC1/, and

O" WD

8

<

:

"11

"22

2"12

9

=

;

(6.13)
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and OE is the time-integral ofO". The matricesB�, B%, OF � and OF% in Eq. (6.12) are defined in
Appendix B.

The use of Eq. (6.11a) in the constitutive equation [Eq. (6.2b)] gives

O�nC1 D
�

1C 2�b

cs�t

�

D O"nC1 �
2�b

cs�t
D O"n (6.14)

where

D WD

2

4

� C 4�=3 � � 2�=3 �
� � 2�=3 � C 4�=3 �
� � �

3

5 (6.15)

Furthermore,O†nC1 is approximated as

O†nC1 D O†n C O�nC1�t (6.16)

Substituting Eq. (6.16) into Eq. (6.7b) gives

f e
nC1 D

Z

�e

QBT O�nC1 d�C
Z

�e

QBpT O†n d� (6.17)

where
QB WD QBeC�t QBp (6.18)

Linearisation of Eq. (6.17) gives, on using Eq. (6.14) along with Eq. (6.12),

�f e
nC1 D

�Z

�e

QBT QDB� d�

�

�vnC1 C
�Z

�e

QBT QDB% d�

�

�dnC1 (6.19)

where
QD D 1

�t

�

1C 2�b

cs�t

�

D (6.20)

i.e., this linearisation gives tangent matrices

Lce WD
Z

�e

QBT QDB� d�; Lke WD
Z

�e

QBT QDB% d� (6.21)

which may be incorporated into the effective tangent stiffness used in the time-stepping algorithm.
Unfortunately, these matrices are not symmetric. However, since all the system matrices are inde-
pendent ofd , this is effectively a linear model. Note that the attenuation functions, representing
the coordinate-stretching, affect the various compatibility matrices, e.g.,QBe, QB� etc. but not the
material moduli matrixD. Consequently, this FE formulation can be applied to both plane-strain
and plane-stress problems by defining� appropriately.

A skeleton of the algorithm for computing the element-level effective internal force and tangent
matrix is given in Box 6.1.
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Box 6.1. Computing effective force and stiffness for 2D elastic PML element.

1. Compute system matricesme, ce and ke [Eq. (6.7a)].
2. Compute internal forcef e

nC1 [Eq. (6.17)].
Use O"nC1 [Eq. (6.12) with Appendix B], andO�nC1 [Eq. (6.14)].

3. Compute tangent matricesLce and Lke [Eq. (6.21) with Eq. (6.18)].
4. Compute effective internal forceQf e

nC1 and tangent stiffnessQke:

Qf e
nC1 De anC1 C cevnC1 C kednC1 C f e

nC1

Qke D ˛k

�

ke C Lke
�

C ˛c .c
e C Lce/C ˛e

m

whereanC1 � Rde.tnC1/, and, for example,

˛k D 1; ˛c D



ˇ�t
; ˛m D

1

ˇ�t2

for the Newmark method.
Note: The tangent stiffnessQke is independent of the solution, and thus has to be computed
only once. However, the internal forcef e

nC1 has to be re-computed at each time-step be-
cause it is dependent on the solution at past times.

6.2.3 Numerical results

Numerical results are presented for the classical soil-structure interaction problems of a rigid strip-
footing on a i) half-plane, ii) layer on a half-plane, and iii) layer on a rigid base.

The time-domain response of a rigid strip-footing on a half-plane, shown in Fig. 5.1a, is studied
through the reactions along the three DOFs due to an imposed displacement along any of the three
DOFs; the imposed displacement is chosen to be of the form of Eq. (A3) and the reaction along
DOF i due to an imposed displacement alongj is denoted byPij , with i; j 2 fV;H;Rg.

This unbounded-domain system is modelled using the bounded-domain-PML model shown in
Fig. 5.1b, composed of a bounded domain�BD and a PML�PM, with the attenuation functions
in Eq. (4.2) chosen asf e

i D f
p

i D fi, with fi chosen to be linear in the PML. For comparison,
the half-plane is also modelled using a viscous-dashpot model [15], wherein the entire domain
�BD [ �PM is taken to be (visco-)elastic and consistent dashpot elements replace the fixed outer
boundary. The finite-element meshes chosen for these models are the same as those used for time-
harmonic analysis in Sec. 5.5.1. Because of the dearth of analytical results in the time domain,
the half-plane is modelled using an extended mesh; the results from this mesh will serve as a
benchmark. From the center of the footing, this mesh extends to a distance of35b downwards and
laterally; the entire domain is taken to be (visco-)elastic, and viscous dashpots are placed on the
outer boundary.
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Figure 6.1a compares the reactions computed for an elastic medium using the PML model and the
dashpot model with results from the extended mesh. Based on a comparison of the frequency-
domain responses of the PML and the viscous dashpot models, the values of!f were chosen as
the excitation frequencies where the two responses are significantly different. The results obtained
from the PML model follow the extended mesh results closely, even though the domain is small
enough for the dashpots to reflect waves back to the footing, as manifested in the higher response
amplitudes. The computational cost of the PML model is observed to be approximately1:6 times
that of the dashpot model; this cost is not significantly large because the dashpot model itself is
computationally inexpensive. Thus, the highly accurate results from the PML model are obtained
at low computational cost. Significantly, the cost of the extended-mesh model is observed to be
approximately17 times that of the PML model. Figure 6.1b presents similar comparisons for a
visco-elastic half-plane. The PML results are visually indistinguishable from the extended mesh
results, even though the computational domain is small: the dashpots generate spurious reflections
even when the medium is visco-elastic.

Figures 6.2 and 6.3 present frequency-dependent flexibility coefficientsFij .a0/ for the rigid strip-
footing on a half-plane computed using a PML model employing the time-domain stretching func-
tions in Eq. (4.2). The flexibility coefficients are defined as the displacement amplitudes along
DOF i due to a unit-amplitude harmonic force along DOFj . Results for the elastic half-plane are
compared in Fig. 6.2 against available analytical results [81]. Due to the dearth of analytical solu-
tions for the strip on a Voigt visco-elastic half-plane, the results obtained from the (possibly less
accurate) time-domain stretching functions are compared in Fig. 6.3 to results from a PML model
employing the frequency-domain-only stretching functions [Eq. (3.26)], denoted by “FD PML” in
the figures. The rationale behind this approach is that the frequency-domain stretching functions
produce highly accurate results for hysteretic damping (Sec. 5.5.1) and hence can be expected to
also produce excellent results for Voigt damping. The results demonstrate that the time-domain
stretching functions indeed produce accurate results as expected, because the wave motion in the
half-plane consists primarily of propagating modes, which are adequately attenuated even by the
time-domain stretching functions.

Figure 5.4a shows a cross section of the rigid strip supported by a layer on a half-plane, and
Fig. 5.4b shows a corresponding PML model with the attenuation functions in Eq. (4.2) chosen as
f e

i D f
p

i D fi , with fi chosen to be linear in the PML. The elastic moduli for the PMLs employed
for the layer and the half-plane are set to the moduli for the corresponding elastic media. For
comparison, a viscous-dashpot model is also employed, where the entire bounded domain is taken
to be (visco-)elastic and consistent dashpots replace the fixed outer boundary. An extended-mesh
model, with viscous dashpots at the outer boundary, is taken as a benchmark model for the layer
on a half-plane; this mesh extends to a distance of40b laterally and downwards from the center of
the footing.

Figure 6.4 shows the reactions of the rigid strip on a layer-on-half-plane due to imposed displace-
ments. The PML results typically follow the results from the extended mesh, even though the
domain is small enough for the viscous dashpots to generate spurious reflections. The computa-
tional cost of the PML model is not significantly large: it is observed to be approximately1:5 times
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Figure 6.1. Reactions of a rigid strip on (visco-)elastic half-plane due to imposed displacements;
L D 3b=2, h D b=2, LP D b, f1.x1/ D 10hx1 � hi=LP , f2.x2/ D 10hjx2j � Li=LP ; hxi WD
.x C jxj/=2; � D 1, � D 0:25 (� D 1:67); td D 30, !f D 1:00 for vertical excitation,0:75 for
horizontal excitation,1:25 for rocking excitation.
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Figure 6.2. Dynamic flexibility coefficients of rigid strip on elastic half-plane computed using a
PML model with stretching functions suitable for time-domain analysis;L D 3b=2, h D b=2,
LP D b, f1.x1/ D 10hx1 � hi=LP , f2.x2/ D 10hjx2j � Li=LP ; � D 1, � D 0:25; “Exact”
results from Ref. 81.
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Figure 6.3. Dynamic flexibility coefficients of rigid strip on visco-elastic half-plane computed
using a PML model with stretching functions suitable for time-domain analysis;L D 3b=2, h D
b=2, LP D b, f1.x1/ D 10hx1�hi=LP , f2.x2/ D 10hjx2j�Li=LP ; � D 1, � D 0:25, � D 0:05;
“FD PML”: a substitute for an exact result, obtained using frequency-domain stretching functions
in PML model.
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that of the dashpot model. Significantly, the extended-mesh results show some spurious reflections
for vertical motion of the footing: the P-wave speed in the half-plane is high enough that the depth
of the extended mesh is not adequate for the time interval in the analysis; the cost of the extended-
mesh model is observed to be approximately18 times that of the PML model. Figures 6.5 and
6.6 demonstrate that the time-domain stretching functions provide frequency-dependent flexibility
coefficients that closely match those obtained using the frequency-domain-only stretching func-
tions.

Figure 5.6a shows a cross section of the rigid strip supported by a layer on a rigid base, and
Fig. 5.6b shows a corresponding PML model wheref e

i D f
p

i D fi in Eq. (4.2), withf1.x1/ D
0 andf2.x2/ linear in the PML. The corresponding viscous-dashpot model includes the entire
bounded domain as (visco-)elastic, with viscous dashpots replacing the fixed lateral boundaries.
The extended-mesh model is also a viscous-dashpot model, but extending to40b on either side
from the center of the footing. Figure 6.7 demonstrates the high accuracy of the PML model, as
well as the small size of the computational domain through the inadequacy of the dashpot model.
These results from the PML model are obtained at a cost approximately1:2 times that of the
dashpot model, i.e., the computational cost is not significantly large. The cost of the extended-mesh
model is observed to be approximately3 times that of the PML model; it is relatively cheaper here
than in the previous two cases because the extension of the mesh is only in the lateral directions,
not downwards.

Figure 6.8 demonstrates that for a rigid strip on an elastic layer on rigid base, the frequency-
dependent flexibility coefficients obtained using the time-domain stretching functions do not al-
ways closely follow those from the frequency-domain-only stretching functions; this is presum-
ably due to the presence of evanescent modes in the system. However, this apparent inadequacy of
the time-domain stretching functions is not reflected in the time domain results in Fig. 6.7a. The
time-domain stretching functions provide accurate results for a rigid strip on a visco-elastic layer,
as demonstrated in Fig. 6.9.

6.3 Three-dimensional problems

6.3.1 Time-domain equations for the PML

For three-dimensional problems, the stretch tensorƒ is given by Eqs. (4.3a) and (4.23), and the
productJƒ is given by Eq. (4.24), but withcs replacingC in all instances. Following the approach
of Sec. 6.2.1, but using the above definitions ofƒ andJƒ, Eq. (6.1) is transformed into the time-
domain equations for the three-dimensional elastic PML:

div
�

� QFeeC† QFepC Q† QFpp
�

D �fM RuC �
cs

b
fC PuC

�

b2
fK uC �

�cs

b

�3

fH U (6.22a)

� D C

�

"C 2�b

cs

P"
�

(6.22b)
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Figure 6.4. Reactions of a rigid strip on (visco-)elastic layer on half-plane, due to imposed dis-
placements;L D 3b=2, LP D b, h D b=2, f1.x1/ D 10hx1 � .d C h/i=LP , f2.x2/ D
10hjx2j � Li=LP ; d D 2b, �l D 1, �h D 4�l , � D 0:4 (� D 4:67); td D 30, !f D 1:00

for vertical excitation,0:75 for horizontal excitation,1:75 for rocking excitation.
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Figure 6.5. Dynamic flexibility coefficients of rigid strip on elastic layer on half-plane computed
using a PML model with stretching functions suitable for time-domain analysis;L D 3b=2, LP D
b, h D b=2, f1.x1/ D 10hx1 � .d C h/i=LP , f2.x2/ D 10hjx2j � Li=LP ; d D 2b, �l D 1,
�h D 4�l , � D 0:4, a0 D !b=

p

�l=�; “FD PML”: a substitute for an exact result, obtained using
frequency-domain stretching functions in PML model.
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Figure 6.6. Dynamic flexibility coefficients of rigid strip on visco-elastic layer on half-plane com-
puted using a PML model with stretching functions suitable for time-domain analysis;L D 3b=2,
LP D b, h D b=2, f1.x1/ D 10hx1 � .d C h/i=LP , f2.x2/ D 10hjx2j � Li=LP ; d D 2b,
�l D 1, �h D 4�l , � D 0:4, � D 0:05, a0 D !b=

p

�l=�; “FD PML”: a substitute for an exact
result, obtained using frequency-domain stretching functions in PML model.
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Figure 6.7. Reactions of a rigid strip on (visco-)elastic layer on rigid base, due to imposed dis-
placements;L D 3b=2, LP D b, f1.x1/ D 0, f2.x2/ D 20hjx2j � Li=LP ; d D 2b, � D 1,
� D 0:4 (� D 4:67); td D 30, !f D 2:75 for vertical excitation,1:25 for horizontal excitation,
1:75 for rocking excitation.
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Figure 6.8. Dynamic flexibility coefficients of rigid strip on elastic layer on rigid base computed
using a PML model with stretching functions suitable for time-domain analysis;L D 3b=2, LP D
b, f1.x1/ D 0, f2.x2/ D 20hjx2j �Li=LP ; d D 2b, � D 1, � D 0:4; “FD PML”: a substitute for
an exact result, obtained using frequency-domain stretching functions in PML model.
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Figure 6.9. Dynamic flexibility coefficients of rigid strip on visco-elastic layer on rigid base com-
puted using a PML model with stretching functions suitable for time-domain analysis;L D 3b=2,
LP D b, f1.x1/ D 0, f2.x2/ D 20hjx2j � Li=LP ; d D 2b, � D 1, � D 0:4, � D 0:05; “FD
PML”: a substitute for an exact result, obtained using frequency-domain stretching functions in
PML model.
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(6.22c)

whereQFee, QFep and QFpp are as in Eqs. (4.25) and (4.26), andFe andFp defined for three-dimensional
problems as in Eq. (4.23), but withcs replacingC throughout,fM , fC, fK and fH are as in
Eq. (4.30), and

U WD
Z t

0

u d�; E WD
Z t

0

" d�; † WD
Z t

0

� d�; Q† WD
Z t

0

† d� (6.23)

Application of the inverse Fourier transform to obtainU , E and† assumes thatNu.! D 0/ D 0,
N".! D 0/ D 0, N� .! D 0/ D 0.

6.3.2 Finite-element implementation

Equation (6.22) is implemented using a standard displacement-based finite-element approach [71].
The weak form of Eq. (6.22a) is derived by taking its inner product with an arbitrary weighting
functionw residing in an appropriate admissible space, and then integrating over the entire com-
putational domain� using integration-by-parts and the divergence theorem to obtain

Z

�
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Z

�

�
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b
fCw � Pu d�C

Z

�
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b2
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Q"ee W � d�C
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Q"ep W † d�C
Z

�

Q"pp W Q† d� D
Z

�

w �
�

� QFeeC† QFepC Q† QFpp
�

n d�

(6.24)

where� WD @� is the boundary of� andn is the unit outward normal to� . The symmetry of�
and† is used to obtain the last three integrals on the left-hand side, with

Q"ee WD 1

2

h

.gradw/ QFeeC QFeeT .gradw/T
i

; Q"ep WD 1

2

h

.gradw/ QFepC QFepT .gradw/T
i

Q"pp WD 1

2

h

.gradw/ QFppC QFppT .gradw/T
i

(6.25)

The weak form is first spatially discretised by interpolatingu andw element-wise in terms of nodal
quantities using appropriate nodal shape functions. This leads to the system of equations

m Rd C c Pd C kd CKDC fint D fext (6.26)

whereD is the time-integral ofd , K is the coefficient matrix associated withD, and the other
terms have the same connotation as in Eq. (6.6). The system matrices are assembled from element-
level constituent matrices, given in terms of theirIJ-th nodal submatrices as

me
IJ D

Z

�e

�fMNI NJ d� I; ce
IJ D

Z

�e

�
cs

b
fCNI NJ d� I

ke
IJ D

Z

�e

�

b2
fKNI NJ d� I; Ke

IJ D
Z

�e

�
�cs

b

�3

fHNI NJ d� I

(6.27a)
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whereNI is the shape function for nodeI and I is the identity matrix of size3 � 3. The element-
level internal force term is given by

f e D
Z

�e

QBeeT O� d�C
Z

�e

QBepT O† d�C
Z

�e

QBppT OQ† d� (6.27b)

where QBee is given in terms of its nodal submatrices as
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(6.28)

and QBep and QBpp are defined similarly, but withQN ee
Ii replaced by QN ep

Ii and QN pp
Ii , respectively, where

QN ee
Ii etc. are defined as

QN ee
Ii WD QFee

ij NI;j ; QN ep
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(6.30)

with O† the time-integral ofO� , and OQ† that of O†. The attenuation functionsf e
i andf p

i are defined
globally on the computational domain, not element-wise. It is conveniently assumed that there is
no contribution tofext from a free boundary of the PML.

Towards solution of the equations of motion, Eq. (6.22c) is approximated as in Eq. (6.12), but
with
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(6.31)

and the matricesB�, B%, OF � and OF% as defined in Appendix C. Equation (6.22b) is approximated
as in Eq. (6.14) but withD now defined as in the first expression in Eq. (5.18b).

Equation (6.27b) is cast into a time-discrete form by approximatingO†nC1 as in Eq. (6.16) and

approximatingOQ†nC1 as
OQ†nC1 D OQ†n C O†nC1�t (6.32)
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Substituting these approximations into Eq. (6.27b) gives

f e
nC1 D

Z

�e

QBT O�nC1 d�C
Z

�e

QBecT O†n d�C
Z

�e

QBppT OQ†n d� (6.33)

where

QB WD QBeeC QBep�t C QBpp�t2

QBec WD QBepC QBpp�t
(6.34)

The linearisation of Eq. (6.33) gives tangent matrices as in Eq. (6.21) with Eq. (6.20), but with the
relevant matrices appropriately defined for three-dimensional problems, as above. These matrices
are not symmetric, but are independent ofd , making this a linear model.

Finally, the time-integral ofd is approximated as

DnC1 DDn C dnC1�t (6.35)

Thus the term involvingD in Eq. (6.26) may be linearised as

�.KDnC1/ D .K�t/ �dnC1 (6.36)

Note thatD is required only whereKe ¤ 0, i.e., from Eq. (6.27a), whereverfH ¤ 0. From
Eq. (4.30), it can be seen that this holds only in the corner regions of the PML, where waves are
attenuated in all three coordinate directions. ThusDn needs to be stored and updated only in the
corner regions.

The profusion of notation and equations in this section cries out for a synopsis of the algorithm
for computing the element-level effective internal force and tangent stiffness; this is presented in
Box 6.2.

6.3.3 Explicit integration

The implementation of the three-dimensional time-domain elastic PML for implicit integration
produces a large unsymmetric system of equations which are difficult to solve directly using exist-
ing equation solvers. Consequently, it is prudent to use explicit time-integration [64] to compute
the response of the system, and thus avoid computation of its stiffness matrix.

Explicit integration requires that inertial matrices be lumped. To this end, the matrices in Eq. (6.27a)
— all of which arise from the inertical term on the right-hand side of Eq. (6.1a) — are lumped by
assigning to each diagonal entry the sum of all the entries in its row, to get:

me D
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�e

�fMNd d�; ce D
Z
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�

fCNd d�
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Z
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b

�3

fHNd d�
(6.37)
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Box 6.2. Computing effective force and stiffness for 3D elastic PML element.

1. Compute system matricesme, ce, ke and Ke [Eq. (6.27a)].
2. Compute internal forcef e

nC1 [Eq. (6.33)].
Use O"nC1 [Eq. (6.12) with Appendix C], andO�nC1 [Eq. (6.14) with Eq. (5.18b)].

3. Compute tangent matricesLce and Lke [Eq. (6.21) with Eq. (6.34)].
4. Compute effective internal forceQf e

nC1 and tangent stiffnessQke:

Qf e
nC1 D meanC1 C cevnC1 C kednC1 CKe

DnC1 C f e
nC1

Qke D ˛k

�

ke C Lke CKe�t
�

C ˛c .c
e C Lce/C ˛e

m

whereanC1 � Rde.tnC1/, and, for example,

˛k D 1; ˛c D



ˇ�t
; ˛m D

1

ˇ�t2

for the Newmark method.
Note: The tangent stiffnessQke is independent of the solution, and thus has to be computed
only once. However, the internal forcef e

nC1 has to be re-computed at each time-step be-
cause it is dependent on the solution at past times.

where

Nd D diag.N11;N21; : : : ;N81/ with 1 WD Œ1; 1; 1� (6.38)

It is necessary to lump all the inertial matrices; lumping only the mass matrix, the minimum
requirement for explicit integration, may lead to strong long-time instabilities in the system. To
obtain a displacement-based formulation, the termsc Pd , kd andKD in Eq. (6.26) are computed at
the element level using Eq. (6.37), and then assembled into the global force vector.

Furthermore, because an explicit time-integration scheme does not have the overhead of solving a
system of equations, it is crucial to compute the internal force as efficiently as possible. Toward
this goal, the strain terms are computed from Eq. (6.22c) by transforming into the PML basis
fe0

ig, which diagonalises the matricesFe andFp. The approximations in Eq. (6.11) are used in
Eq. (6.22c) to obtain
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(6.39)
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where

F { WD
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Fe

�t
C Fp

��1

; F � WD FeF {; F% WD FpF { (6.40)

Transforming Eq. (6.39) into the PML basisfe0
ig gives
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(6.41)

where the primed tensors are given by, e.g.,"0
n D QT "nQ. Note that the tensorsF �0, F%0 andF { 0

are diagonal tensors.

The quantityQT .gradu/Q in Eq. (6.41) — dropping the time-step subscript for ease of notation
— is in fact the displacement gradient in the PML basis, which can be checked by computing it
using indices: if the displacementu is interpolated asuk D NI dI

k
, whereNI is the shape function

value for nodeI , anddI
k

is the displacement of nodeI in the directionei , then

QT .gradu/Q � u0
i;j D dI

i
0N 0

I;j with dI
i

0 WD Qkid
I
k ; N 0

I;j WD QljNI;l (6.42)

wheredI
i

0 is the displacement in the directione0
i at nodeI , obtained by transformingdI

k
into the

PML basis, andN 0
I;j is the gradient ofNI in the directione0

j .

Upon rewriting the velocity terms in Eq. (6.41) in a similar manner,"0
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(6.43)

wherev0
i;j is the velocity gradient in the PML basis;F �

i
0 is the i -th diagonal element ofF � 0,

and similarly forF
%
i

0 and F {
i

0. The strain"nC1 in the global coordinates may be obtained by
transforming"0

nC1 back:

"nC1 D Q"0
nC1QT (6.44)

The element algorithm for explicit integration is presented below in Box 6.3.

83



Box 6.3. Computing effective force for explicit integration for 3D elastic PML element.

Initial mass computation
Compute the diagonal element mass matrixme using Eq. (6.27a), withfM defined in
Eq. (4.30), and assemble into the global mass matrix.

Element force computation
Compute the internal element forcef e

nC1 as follows:
1. Compute displacement and velocity gradients in the PML basis, using Eq. (6.42).
2. Compute the strain"0

nC1 in the PML basis using Eq. (6.43) and transform to global
coordinates using Eq. (6.44).

3. Compute the stressO�nC1 using Eq. (6.14) with Eq. (5.18b), and the stress time-

integrals O†nC1 and OQ†nC1 from Eq. (6.16) and (6.32), respectively.
4. Compute the internal forcef e

nC1 using Eq. (6.33).

Compute the total internal force as follows:
1. Compute the diagonal matricesce, ke, Ke using Eq. (6.37), withfC, fK andfH given

by Eq. (4.30). The matrixKe is computed only in the corner regions of the PML
model.

2. In the corner regions of the model, compute the time-integral of displacementDnC1

using Eq. (6.35).
3. Add the force term [Eq. (6.26)]

ce PdnC1=2 C kednC1 CKe
DnC1

to f e
nC1 to get the total internal force. The last term in the above expression is non-

zero only in the corner regions of the PML model.

6.3.4 Evaluation of explicit integration with PML

In order to successfully use an explicit integration scheme with the PML model, two key issues
need to be evaluated: (a) the effect of PML on the critical time-step size, and (b) the effect of
lumping of the PML matrices in Eq. (6.27a) on the accuracy of results. Additionally, we can also
evaluate the effect of lumping on the critical time-step size. Because the complexity of the PML
equations precludes an analytical evaluation in this paper, we resort to a numerical evaluation in the
context of a bar of brick elements, which is analogous to the one-dimensional systems commonly
used in the analytical evaluation of stability and accuracy.

Consider a semi-infinite elastic bar with a square cross-section of widthb [Fig. 6.10(a)], with shear
modulus�, mass density�, and Poisson’s ratio�, subjected to a uniform force at the free end. The
time-domain response of this system is studied by applying the force either longitudinally along
the axis of the bar — thus simulating P-waves — or transverse to it, thus simulating S-waves,
and recording the displacement of the tip in the corresponding direction. In the latter case, the
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displacements of the bar along its axis are constrained in order to eliminate the beam bending
modes, which are not supported by the PML model. The time variation of the force is given by the
waveform in Eq. (A3).

x1

(a) (b)

PML

b

b
LP

Le

Semi-infinite bar:�, �, �

Force

Force

Figure 6.10. (a) Semi-infinite elastic bar subjected to a uniform force at the free end; (b) a PML
model, fixed at the outer boundary.

This bar is modelled using the PML model shown in Fig. 6.10(b), discretised using eight-noded
bricks, with one element across the cross-section of the bar, and enough elements along the length
of bar to adequately model the wave propagation, thus evoking a one-dimensional system. The
attenuation functions within the PML [cf. Eq. (4.2)] are chosen asf e

1 D f
p

1 D f1, andf e
2 D

f
p

2 D f e
3 D f

p
3 � 0, with f1 chosen as [79,91]:

f1.x1/ WD f0

�

x1 �Le

LP

�

(6.45)

In a slight confusion of notation, the characteristic lengthb of the PML model used in e.g.,
Eq. (6.37) is taken to be the depthLP of the PML, and is not the same as the widthb of the
bar. An extended-mesh model — fully elastic and extending upto25b from the free end, with the
same mesh density as the PML model — is used to provide benchmark results for assessing the
accuracy of the results from the PML model.

The effect of the PML on the critical time-step size is considered first by comparing the critical
time-step size of the PML model to that of a fully-elastic model of the same size, i.e., one where
the PML elements have been replaced with elastic elements. The critical time-step size for either
model is determined by carrying out the analysis with different time-step sizes and converging
upon the maximum step size for which we get stable results. Three variants of the PML model
are considered: (a) all inertial matrices lumped [Eq. (6.37)], (b) all inertial matrices consistent
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[Eq. (6.27a)], and (c) an intermediate formulation where onlythe mass matrix is lumped and the
other inertial matrices are consistent.

Table 6.4 shows the critical time-step sizes for both the elastic and the PML models, for both
lumped and consistent matrices, as well as for the intermediate formulation for the PML. It is seen
that for both the lumped and the consistent formulations, the critical time-step size required by the
PML model is approximately equal to that of the elastic model. The critical time-step required
for the intermediate formulation under transverse excitation is also similar to that required for the
lumped formulation. However, for longitudinal excitation, the intermediate formulation exhibits a
strong long-time instability in the free-vibration phase irrespective of the time-step size.

Model
Lumped Consistent Intermediate

Longitudinal Transverse Longitudinal Transverse Longitudinal Transverse

Elastic 0.04865 0.05009 0.02582 0.02586 —
PML 0.04871 0.04921 0.02606 0.02632 unstable 0.04958

Box 6.4. Comparison of critical time-step sizes for three choices of lumping of inertial matrices
in the PML model of a semi-infinite bar;b D 0:1; Le D 0:2, LP D 0:8; f0 D 10; td D 10,
!f D 3:0.

This demonstrates that PML elements with either fully-lumped or fully-consistent matrices do
not have any significant effect on the critical time-step size for the corresponding elastic model.
Furthermore, the PML elements exhibit behaviour well-known for elastic elements: consistent
matrices yield smaller critical time-step sizes than do lumped matrices [65]. This observation al-
lows the speculation that for the intermediate formulation under longitudinal excitation — where
the bar is unconstrained except at one end — the specific combination of lumped and consistent
matrices reduce the critical time-step size to an unreasonably small value. The longitudinal con-
straint imposed upon the bar for transverse excitation allows a stable solution for the intermediate
formulation.

The effect of lumping on the accuracy of results is considered next. The error in the PML solution
is computed relative to the benchmark extended-mesh solution as

%errorWD
maxn

ˇ

ˇup.tn/ � ue.tn/
ˇ

ˇ

maxn jue.tn/j
� 100 (6.46)

whereue andup are the tip displacements of the extended-mesh model and the PML model, re-
spectively, at time stepstn. Figure 6.11 compares the displacements from the consistent and the
lumped formulations of the PML against those from the extended mesh, for both longitudinal and
transverse excitations, and Table 6.5 shows the errors from the two formulations.

It is difficult to visually distinguish the results from the two PML models, and both follow the
extended-mesh result closely. The computed errors from the lumped formulation are seen to be
slightly larger than those from the consistent formulation, thus appearing to contradict analyses for
elastic elements that posit that lumped masses are well-matched with explicit integration, and are
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Figure 6.11. Tip displacements of a semi-infinite bar due to applied forces; longitudinal dis-
placements due to longitudinal excitation, transverse displacements due to transverse excitation;
b D 0:1; Le D 0:2, LP D 0:8; f0 D 10; td D 10, !f D 3:0.

Longitudinal Transverse
Lumped Consistent Lumped Consistent

%error 2.89 1.73 3.71 2.24

Box 6.5. Comparison of relative error in tip displacement of PML model of semi-infinite bar from
consistent and lumped formulations;b D 0:1; Le D 0:2, LP D 0:8; f0 D 10; td D 10, !f D 3:0.

likely to produce more accurate results than consistent masses [65,92]. It must be remarked that the
error is characterised differently in the two cases: these classical studies of well-matched methods
study the error in the natural frequency of the discrete system, whereas here the amplitude error is
used to assess accuracy. However, because the difference in accuracy of the two formulations is
negligible in practice, it is felt that this discrepancy with earlier analyses does not warrant further
investigation.

6.3.5 Numerical results

Numerical results are presented for the classical soil-structure interaction problems of a square
flexible footing on a (i) half-space, (ii) layer on a half-space, and (iii) layer on a rigid base.

Figure 6.12(a) shows a quarter-model of a homogeneous isotropic elastic half-space with shear
modulus�, mass density� and Poisson’s ratio�, subjected to an uniform force applied over a
square area of half-widthb. The time-domain response of this system is studied by applying
the force either vertically or horizontally, and recording the displacements in the corresponding
direction at the center and at the corner of the square; the time variation of the force is of the form
in Eq. (A3).

This unbounded-domain system is modelled using the PML model shown in Fig. 6.12(b), dis-
cretised using an adequately dense regular mesh of eight-noded bricks. In a slight confusion of
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Figure 6.12. (a) Quarter-model of a half-space subjected to a uniform force applied over a square
area of half-widthb; (b) a PML model, fixed at the outer boundary.

notation, the characteristic lengthb of the PML model used in e.g., Eq. (6.37) is taken to be the
depthLP of the PML, and is not the same as the half-widthb of the square area. For comparison,
the half-space is also modelled using viscous dashpots [15], wherein the entire domain includ-
ing the PML region is taken to be elastic and consistent dashpot elements replace the fixed outer
boundary; thus the mesh used for the dashpot model is comparable to that used for the PML model.
An extended-mesh model, composed entirely of elastic elements in the interior and with the same
mesh density as the PML and the dashpot models, is used to provide benchmark results. This
mesh extends to a distance of25b downward from the center of the excitation, and laterally to a
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distance of20b for vertical excitation and25b for horizontal excitation; the dimensions are chosen
to ensure that waves reflected back from the outer boundary — modelled using viscous dashpots
— do not affect the recorded displacements within the duration of the simulation.

The attenuation functions in the PML [cf. Eq. (4.2)] are chosen asf e
i D f

p
i D fi , with fi now

chosen to be a monomial:

fi.xi/ WD f0i

�

xi

LPi

�p

(no summation) (6.47)

wherexi is the distance into the PML, andLPi is the depth of the PML, in thei -th direction.
A quadratic monomial (p D 2) is typically recommended because, in general, it expected to
best ameliorate the error due to the finite-element discretisation [89, 93]; this is in contrast to a
continuum PML, where a linear monomial is optimal [91].

An optimal value of the coefficientf0i may be estimated from a wave-reflection analysis of a
discretised one-dimensional time-harmonic PML [89], by minimising the expected reflection co-
efficient for a white-noise excitation. This work adopts an approach that is similar in spirit, but
more directly applicable to three-dimensional problems: the optimal value off0i for a given PML
depth — represented by the number of elements through the depth — for bothp D 1 andp D 2,
is found by minimising the expected error in the response of a canonical three-dimensional PML
model over a range of values off0i . The canonical PML model is chosen to be the half-space
model presented above, with shear modulus� D 1, Poisson ratio� D 0:25 and mass density
� D 1, with the PML depthLPi � LP , and the monomial coefficientf0i � f0 the same in all
three directions, subjected to the excitation defined above, and its response characterised by the
displacements at the center and at the corner of the excitation. The expected error is computed
as the mean of the relative maximum error, given by Eq. (6.46) withup andue now representing
the relevant displacement quantity of the PML and the extended-mesh model, respectively. The
mean relative error is obtained by averaging the relative error in the center and corner displace-
ments for both vertical and horizontal excitation over four different sets of excitation parameters:
(a) !f D 1:5, td D 10, (b) !f D 2:25, td D 15, (c) !f D 3:0, td D 10, and (d)!f D 3:75,
td D 15.

Figure 6.13 compares the minimum expected relative errors forp D 1 andp D 2 for various
depths of the PML, characterised bynP , the number of elements throught the depth of the PML. It
is seen that for a PML more than 4 elements deep, there is little significant difference in accuracy
between the results for the linear and quadratic attenuation function;p D 2 gives slightly more
accurate results for depths of 4–7 elements, whereas the situation is reversed for depths of 8–
12 elements. Based on these results, the numerical examples in this paper use PMLs that are 8
elements deep, with the corresponding minimizing coefficient value off0 D 9:0 andp D 1.

Figure 6.14 compares the displacements from the PML model and the dashpot model against those
from the extended mesh, and Table 6.6 compares the relative error in the displacements computed
from the two models. Note that the PML and the dashpot models are small: the PML starts at a
distance of0:2b from the excitation, and is only0:8b deep. The results from the PML model are
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Figure 6.13. Minimum expected relative error in displacements for different numbers of elements
nP through the depth of the PML in the canonical half-space PML model, for linear and quadratic
attenuation functions;b D 1; Le D 0:2b, LP D 0:1bnP ; � D 1, � D 0:25, � D 1.

visually indistinguishable from the extended mesh results, even though the domain is small enough
for the dashpots to reflect waves back early in the simulation, as manifested in the higher response
amplitudes and larger errors of the results from the dashpot model.

The effect of lumping of the PML matrices and the effect of PML on the critical time-step size was
also studied. The time-step size required for stability of a corresponding fully-elastic model also
served as a stable time-step for the PML model. Use of a consistent formulation led to a negligible
decrease in the accuracy of results but a considerably reduced critical time-step size. Use of the
intermediate lumped formulation resulted in a strong long-time instability in the free-vibration
phase even for very small time-step sizes.

Center displacement Corner displacement
Excitation PML Dashpot PML Dashpot

%error
Vertical 4.98 45.67 6.07 85.31
Horizontal 5.79 21.76 5.04 53.24

Box 6.6. Relative error in displacements on surface of half-space due to applied forces;b D 1;
Le D 0:2b, LP D 0:8b; � D 1, � D 0:25, � D 1; td D 10, !f D 3:00. The large errors due to
the dashpot model highlight the small size of the domain.

The efficacy of the PML model may be gauged by comparing the computational costs of the three
models, as presented in Table 6.7. Both the PML and the dashpot models have the same number
of elements, which is significantly smaller than the number of elements in the extended mesh.
However, the time-step size required for stability of the dashpot model is smaller than that of a
fully-elastic model, because the dashpots introduce material damping into the system. Therefore
the dashpot model required more time-steps to complete than the PML model. In order to obtain
a realistic assessment of the computational cost, the dashpot model, as well as the elastic region
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Figure 6.14. Displacements on surface of half-space due to applied forces; vertical displacements
due to vertical excitation, horizontal displacements due to horizontal excitation;b D 1; Le D 0:2b,
LP D 0:8b; � D 1, � D 0:25, � D 1; td D 10, !f D 3:00. The large errors due to the dashpot
model highlight the small size of the domain.

in the PML model, were discretised with under-integrated elements with hourglass control [64]
as well as with fully-integrated elements; the results from the two formulations were of similar
accuracy. The use of under-integrated elastic elements within the PML model did not result in
any noticeable reduction of computational cost because the elastic region is much smaller than
the PML region. Results for the PML and dashpot models were obtained using the explicit finite-
element code LS-DYNA [94] on a desktop workstation with a 2.6GHz AMD Opteron processor,
while the extended-mesh results were obtained using a specially optimised and parallelised in-
house code running on 16 processors of a 32-processor node of 1.7GHz IBM Power4+ processors
at the San Diego Supercomputer Center. While the differing systems make a direct comparison
of the wall-clock times difficult, it is remarkable that the PML model achieves the accuracy of
the extended-mesh model at a cost comparable in order to the dashpot model, several orders of
magnitude smaller than the cost of the extended mesh.

Figure 6.15(a) shows a quarter-model of a layer on a half-space, with a layer of depthd with shear
modulus�l , supported by a half-space of shear modulus�h, and with Poisson ratio� and mass
density� in both domains, and Fig. 6.15(b) shows a corresponding PML model. Note that the PML
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Model #elements #time-steps wall-clock time

PML 4,000 614 30.2 secs
Dashpots 4,000 876 14.4 secs (1-pt elas.)

20.6 secs (8-pt elas.)
Extd. mesh 10,140,000 (V) 878 35.1 proc-hrs (V)

15,812,500 (H) 59.3 proc-hrs (H)

Box 6.7. Comparison of computational costs of three models fora half-space. The dashpot model
was discretised using both under-integrated (1-pt elas.) and fully-integrated (8-pt elas.) elastic el-
ements. The mesh size for the extended mesh was different for vertical (V) and horizontal (H)
excitations.

model must incorporate the interface between the layer and the half-space because it is a physical
feature that generates wave reflections in the physical unbounded-domain model; the PML is meant
to eliminate only spurious reflections from the outer boundary. The elastic moduli for the PMLs
employed for the layer and the half-space are set to the moduli for the corresponding elastic media.
A viscous-dashpot model is also employed for comparison, where the entire domain, including
the PML region, is taken to be elastic, and consistent dashpots model the outer boundary. An
extended-mesh elastic model with viscous dashpots at the outer boundary — extending laterally
to a distance of20b from the center of the excitation for vertical excitation and25b for horizontal,
and downward to35b from the base of the layer — is used as a benchmark model.

Figure 6.16 shows the displacements computed from the three models, and Table 6.8 compares
the errors due to the PML and the dashpot models. The results from the PML model are virtually
indistinguishable from those from the extended mesh, even though the domain is small enough for
the dashpot model to generate spurious reflections. The computational cost of the PML model,
as shown in Table 6.9, is of the same order of magnitude as that of the dashpot model, but an
insignificant fraction of the cost of the extended-mesh model. The critical time-step size for the
elastic elements was adequate as a stable time-step size for the PML elements. Using the consistent
formulation of the PML had little effect on the accuracy of results, but reduced the critical time-
step size considerably. The intermediate lumped formulation showed a strong long-time instability
in the free-vibration phase even for very small time-step sizes.

Center displacement Corner displacement
Excitation PML Dashpot PML Dashpot

%error
Vertical 6.79 27.88 8.29 51.84
Horizontal 6.51 20.19 9.75 41.83

Box 6.8. Relative error in displacements on surface of layer ona half-space due to applied forces;
b D 1, d D b; Le D 0:2b, LP D 0:8b; �l D 1, �h D 2�l , � D 0:25, � D 1; td D 15,
!f D 2:25. The errors due to the dashpot model highlight the small size of the domain.

Figure 6.17(a) shows a quarter-model of a layer of depthd on a rigid base, with shear modulus
�, mass density� and Poisson’s ratio�, and Fig. 6.17(b) shows its PML model. The corre-
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Figure 6.15. (a) Quarter-model of a layer on a half-space subjected to a uniform force applied over
a square area of half-widthb; (b) a PML model, fixed at the outer boundary.

sponding viscous-dashpot model is entirely elastic, with consistent dashpots replacing the fixed
lateral boundaries. The benchmark extended-mesh model extends laterally to22b from the cen-
ter of the excitation for vertical excitation and25b for horizontal. Figure 6.18 shows that the
PML model produces accurate results even with a small bounded domain where the dashpot model
generates spurious reflections. The PML model is able to follow the extended-mesh result in the
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Figure 6.16. Displacements on surface of layer on a half-spacedue to applied forces; vertical
displacements due to vertical excitation, horizontal displacements due to horizontal excitation;
b D 1, d D b; Le D 0:2b, LP D 0:8b; �l D 1, �h D 2�l , � D 0:25, � D 1; td D 15,
!f D 2:25. The errors due to the dashpot model highlight the small size of the domain.

Model #elements #time-steps wall-clock time

PML 8,000 867 65.6 secs (1-pt elas.)
67.9 secs (8-pt elas.)

Dashpots 8,000 1,237 15.4 secs (1-pt elas.)
44.3 secs (8-pt elas.)

Extd. mesh 14,584,000 (V) 1,256 116.7 proc-hrs (V)
22,742,500 (H) 170.5 proc-hrs (H)

Box 6.9. Comparison of computational costs of three models fora layer on a half-space. The
dashpot model, as well as the elastic region in the PML model, was discretised using both under-
integrated (1-pt elas.) and fully-integrated (8-pt elas.) elastic elements. The mesh size for the
extended mesh was different for vertical (V) and horizontal (H) excitations.

free-vibration phase of the displacements from horizontal excitation — in the direction of un-
boundedness of the domain — when the results from the dashpot model are entirely inadequate;
this is reflected in the comparison in Table 6.10 of errors due to either model. The slight phase
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difference between the PML and the extended-mesh results in the free-vibration phase may be due
to evanescent waves not being entirely attenuated [79]. Table 6.11 shows that the PML model is
able to achieve this accuracy at a cost that is of the same order of magnitude as that of the dashpot
model, and at a small fraction of the cost of the extended-mesh model. The effect of lumping of
the PML matrices and the effect of PML on the critical time-step size was similar to that observed
for the half-space and layer-on-half-space models.

(a)

(b)

PML

b

b

d

d

LP
Le

Layer: �, �, �

Force

Force

Figure 6.17. (a) Quarter-model of a layer on a rigid base subjected to a uniform force applied over
a square area of half-widthb; (b) a PML model, fixed at the outer boundary.
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Figure 6.18. Displacements on surface of layer on rigid base due to applied forces; vertical dis-
placements due to vertical excitation, horizontal displacements due to horizontal excitation;b D 1,
d D 2b; Le D 0:2b, LP D 0:8b; � D 1, � D 0:25, � D 1; td D 15, !f D 2:25. The large errors
due to the dashpot model highlight the small size of the domain.

Center displacement Corner displacement
Excitation PML Dashpot PML Dashpot

%error
Vertical 6.67 31.81 11.25 56.62
Horizontal 15.00 48.30 30.85 94.86

Box 6.10. Relative error in displacements on surface of layer on rigid base due to applied forces;
b D 1, d D 2b; Le D 0:2b, LP D 0:8b; � D 1, � D 0:25, � D 1; td D 15, !f D 2:25. The large
errors due to the dashpot model highlight the small size of the domain.



Model #elements #time-steps wall-clock time

PML 8,000 614 45.3 secs (1-pt elas.)
50.5 secs (8-pt elas.)

Dashpots 8,000 828 10.5 secs (1-pt elas.)
31.9 secs (8-pt elas.)

Extd. mesh 976,800 (V) 812 4.7 proc-hrs (V)
1,260,000 (H) 5.9 proc-hrs (H)

Box 6.11. Comparison of computational costs of three models for a layer on rigid base. The
dashpot model, as well as the elastic region in the PML model, was discretised using both under-
integrated (1-pt elas.) and fully-integrated (8-pt elas.) elastic elements. The mesh size for the
extended mesh was different for vertical (V) and horizontal (H) excitations.





7 CONCLUSIONS

This report has developed the concept of a PML for elastic waves by utilising insights obtained
in the context of electromagnetics. The concept has been developed through the presentation of
PMLs for: (1) a rod on elastic foundation, (2) acoustic waves in two and three dimensions, and (3)
elastic waves in two and three dimensions.

The PML concept is summarised as follows. A perfectly matched medium (PMM) is defined as
one governed by a modification of the equations for the elastic medium, with the modification
motivated by a continuous, complex-valued, uncoupled coordinate stretching. Solutions admit-
ted by the PMM are of the form of those admitted by the elastic medium, but with the stretched
coordinates replacing the real coordinates. PMMs exhibit the perfect matching property: if the
stretching functions of two adjacent PMMs match at their interface, then the interface is invisible
to all wave-type solutions in the PMMs and no reflected wave is generated when a wave travels
from one PMM to the other. This property holds irrespective of the direction of propagation of
the wave or its frequency. Furthermore, if choices of the stretching functions are appropriate, the
solutions in the PMM take the form of the corresponding elastic medium solution, but with an
imposed spatial attenuation. Realistic choices of the stretching function can impose attenuation on
both propagating and evanescent waves. Notably, the imposed attenuation is directly spatial: it is
not imposed through a temporal attenuation, or damping. The perfect matching and the attenuative
properties of the PMM is employed to build an absorbing layer — the PML — around a bounded
domain such that the layer absorbs and attenuates outward-propagating waves of all non-tangential
angles-of- incidence and of all non-zero frequencies. Termination of the layer by a fixed boundary
causes reflection of the waves back towards the bounded domain, with the amplitude of reflected
waves controllable — independently of the size of the bounded domain — by the choice of the
PML parameters: (a) the depth of the layer and (b) the attenuation profile in it. Thus, wave prop-
agation in an unbounded domain can be modelled through a bounded domain that is restricted to
the region of interest in the analysis, and a suitably-defined PML surrounding it.

Although the PML is fundamentally formulated in the frequency domain, corresponding time-
domain formulations are obtained by selecting stretching functions in the PML that have a simple
dependence on the factor i!, which facilitates transformation of the time-harmonic equations into
the time domain. In the interest of obtaining a realistic model of the unbounded domain, material
damping is introduced into the PML equations in the form of a Voigt damping model in the consti-
tutive relation for the PML, although a causal hysteretic model [95–97] can be used as well.

The PML formulations are implemented numerically by a straightforward finite element approach.
In the frequency-domain, the FE matrices obtained are symmetric, but intrinsically complex-valued
and frequency-dependent. Thus the system matrices for the entire bounded domain are complex,
symmetric and banded, the PML contributions to which have to be computed anew for each fre-
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quency. In the time-domain, although the tangent stiffness for the acoustic PML is symmetric,
unfortunately the stiffness for the elastic PML turns out to be unsymmetric. While this is not
overly demanding for two-dimensional problems, it becomes difficult to solve a large system of un-
symmetric equations for three-dimensional elastic problems. Consequently, the three-dimensional
elastic PML is made suitable for explicit time-integration, and an efficient method of computing
the strain terms in the PML is developed to take advantage of the lack of overhead of solving
equations.

The acoustic PML models have been numerically validated for the classical problem of an acoustic
waveguide, which is representative of the reservoir behind the dam. The elastic PML models have
been numerically validated for the classical soil-structure interaction problems of a footing on a (i)
half-space, (ii) layer on a half-space, and (iii) layer on a rigid base. The PML models — typically
8–10 elements deep — gave highly accurate results, even though the domains were small enough
that comparably-sized viscous-dashpot models generated spurious wave reflections early on in the
duration of the simulation. The computational cost of the PML models was comparable in order
to that of the dashpot models, but was an insignificant fraction of the cost of the corresponding
extended-mesh models used as benchmarks for the time-domain problems. For the explicit PML,
it was found that the time-step size for a PML element is similar to that for a corresponding elastic
element, and that lumping the intertial matrices did not significantly affect the accuracy of results.
Furthermore, it has been verified numerically that this PML model is stable not only in the long
time in free vibration, but even if it is excited over a long duration.

These PML models thus provide an accurate and inexpensive absorbing boundary model for mod-
elling the foundation rock and impounded water in the earthquake analysis of dams, and will
hopefully lead to realistic and accurate evaluation of the earthquake safety of new or existing
dams.
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NOTATION

Roman symbols

a0 non-dimensional frequency
a nodal accelerations
A cross-sectional area of elastic rod
b half-width of footing
B, QB, QBe, QBp, B�, B%,
QBee, QBep, QBpp compatibility matrices

c damping coefficient ofNS , NS1

cl wave speed in elastic rod
cp P-wave speed
cs S- or shear-wave speed
cv Love wave speed
ce, Lce, c, Lc element-level and global damping matrices
C, Cijkl material stiffness tensor
d depth of layer
d nodal displacements
D material moduli matrix
D time-integral ofd
feig standard orthonormal basis
E, E� Young’s modulus
E, OE time integral of", O"
f , Nf , fi , f e, f p,
f e

i , f p
i attenuation function(s)

f0 coefficient of monomial inf e
i , f p

i

fm, fc, fk see Eq. (4.8)
f e element-level internal force term
f e

int, fint, fext internal and external force terms
F force on acoustic waveguide
F , NF , Fi , NFe, NFp integrals off , Nf , fi , f e, f p

Fij flexibility coefficient of rigid strip-footing, withi; j 2 fV;H;Rg
Fe, Fp, QFe, QFp,
QFee, QFep, QFpp attenuation tensors; Eq. (4.4), (4.25)

F1 dynamic flexibility matrix of rigid strip-footing
H (in subscript) horizontal DOF of rigid strip-footing
i D
p
�1 unit imaginary number
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Im imaginary part of a complex number
I identity matrix
J Jacobian determinant of coordinate stretch
k stiffness coefficient ofNS , NS1

kg, k�
g static stiffness per unit length of (visco-)elastic foundation of rod

kp, ks, k�
s , kv wavenumbers for P, S, and Love waves

ke
IJ nodal submatrix of element stiffness matrix

ke, Lke, k element-level and global stiffness matrices
Ke, K element-level and global coefficient matrices ofD

L length of bounded medium
Le depth of elastic medium
LP , LPi depth of PML
me

IJ nodal submatrix of element mass matrix
me, m element-level and global mass matrices
nc number of full cycles in imposed displacement
n unit normal to a surface
N , NI , Nd nodal shape functions
q direction of particle motion
Q, Qij rotation-of-basis matrix
r0 characteristic length quantity for the rod on elastic foundation
r, ri direction of wave propagtion
R (in subscript) rocking DOF of rigid strip-footing
jRj, jRppj, jRspj amplitude(s) of wave(s) reflected from the PML
Re real part of a complex number
NS non-dimensional dynamic stiffness of bounded rod
NS1 non-dimensional dynamic stiffness of unbounded rod
Sij component of dynamic stiffness matrix of layer on rigid base
S1 dynamic stiffness matrix of layer on rigid base
td duration of applied force
u, ui , u displacement(s)
U time-integral ofu
V (in subscript) vertical DOF of rigid strip-footing
w, wi, w arbitrary weighting function in weak form
x, xi, x real coordinate(s)
Qx, Qxi, Qx complex stretched coordinate(s)

Greek symbols


 ,
 internal variable in acoustic formulation
ıij Kronecker delta
� differential operator

108



�t time-step size
", "ij , ", O" strain quantities
"0

ij , "0 strain quantities in PML basis
� hysteretic damping ratio for visco-elastic medium
� angle of incidence of outgoing wave on PML
�, �� bulk modulus
�, �i complex coordinate stretching function(s)
ƒ,ƒij stretch tensor
�, �� shear modulus
� Poisson’s ratio
� mass density
� , �ij , � , O� , Q� stress quantities
†, O† time-integral of� , O�
Q†, OQ† time-integral of†, O†
', ' internal variable in acoustic formulation
! excitation frequency
!f dominant forcing frequency of imposed displacement
� entire bounded domain used for computation
�e element domain
�BD elastic domain
�PM perfectly matched layer (PML)
�1

PM unbounded perfectly matched medium (PMM)
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APPENDIX A: IMPOSED DISPLACEMENT FOR TRANSIENT
ANALYSIS

Described here is the waveform employed as the imposed displacement in the numerical examples
in this report. The waveform is in the form of a time-limited cosine wave, bookended by cosine
half-cycles so that the initial displacement and velocity as well as the final displacement and ve-
locity are zero. It is characterised by two parameters: the durationtd and the dominant forcing
frequency!f ; the dominant forcing period is then

Tf D
2�

!f

and the number of full cycles,nc, in the excitation is calculated as

nc D
�

td

Tf

� 1

2

�

(A1)

where the1=2 accounts for the cosine half-cycle used to end the excitation. For consistency, the
forcing period is adjusted to

Tf WD
td

nc C 1=2
(A2)

The excitation is then defined as

u0.t/ D
1

2

�

1 � cos

�

2�
t

Tf

��

t 2 Œ0;Tf =2/

D cos

�

2�
t � Tf =2

Tf

�

t 2 ŒTf =2; ncTf / (A3)

D 1

2

�

1 � cos

�

2�
t � ncTf

Tf

��

� 1 t 2 ŒncTf ; td �

D 0 t 2 .td ;1/

A typical waveform and its Fourier transform are shown in Fig. 2.7. The Fourier transform shows
a dominant frequency, as expected; the bandwidth of the peak at this frequency varies inversely
with td , but is largely independent of!f .
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APPENDIX B: SPECIAL MATRICES FOR TWO-DIMENSIONAL
ELASTIC PML

The matricesB�, B%, OF � and OF% used in Eq. (6.12) in Sec. 6.2.2 are defined as follows. De-
fine

F { WD
�

Fe

�t
C Fp

��1

; F � WD FeF {; F% WD FpF { (B1)

with Fe andFp defined for two-dimensional problems as in Eq. (4.5b), but withcs replacingC .
ThenB� is defined in terms of nodal submatrices as

B�
I WD

2

4

F �
11N {

I 1 F �
21N {

I 1

F �
12N {

I 2 F �
22N {

I 2

F �
11N {

I 2 C F �
12N {

I 1 F �
21N {

I 2 C F �
22N {

I 1

3

5 (B2)

where
N {

Ii WD F {
ij NI;j (B3)

The matrixB% is defined similarly, withF% replacingF � throughout. Furthermore,

OF � WD

2

6

4

�

F �
11

�2 �

F �
21

�2
F �

11F �
21

�

F �
12

�2 �

F �
22

�2
F �

12F �
22

2F �
11F �

12 2F �
21F �

22 F �
11F �

22 C F �
12F �

21

3

7

5
(B4)

and OF% is defined similarly, withF% replacingF � throughout.
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APPENDIX C: SPECIAL MATRICES FOR THREE-DIMENSIONAL
ELASTIC PML

The matricesB�, B%, OF � and OF% for three-dimensional problems as used in Eq. (6.12) in Sec. 6.2.2
are defined as follows. Consider the matricesF {, F �, F% as defined in Eq. (B1), but withFe and
Fp defined for three-dimensional problems as in Eq. (4.23) withcs replacingC throughout. Then
B� is defined in terms of nodal submatrices as

B�
I WD

2

6

6

6

6

6

6

4

F �
11N {

I 1 F �
21N {

I 1 F �
31N {

I 1

F �
12N {

I 2 F �
22N {

I 2 F �
32N {

I 2

F �
13N {

I 3 F �
23N {

I 3 F �
33N {

I 3

F �
11N {

I 2 C F �
12N {

I 1 F �
21N {

I 2 C F �
22N {

I 1 F �
31N {

I 2 C F �
32N {

I 1

F �
11N {

I 3 C F �
13N {

I 1 F �
21N {

I 3 C F �
23N {

I 1 F �
31N {

I 3 C F �
33N {

I 1

F �
12N {

I 3 C F �
13N {

I 2 F �
22N {

I 3 C F �
23N {

I 2 F �
32N {

I 3 C F �
33N {

I 2

3

7

7

7

7

7

7

5

(C1)

whereN {
Ii is given by Eq. (B3). The matrixB% is defined similarly, withF% replacingF � through-

out. Furthermore,

OF � WD

2

6

6

6

6

6

6

6

4

�

F �
11

�2 �

F �
21

�2 �

F �
31

�2
F �

11F �
21 F �

11F �
31 F �

21F �
31

�

F �
12

�2 �

F �
22

�2 �

F �
32

�2
F �

12F �
22 F �

12F �
32 F �

22F �
32

�

F �
13

�2 �

F �
23

�2 �

F �
33

�2
F �

13F �
23 F �

13F �
33 F �

23F �
33

2F �
11F �

12 2F �
21F �

22 2F �
31F �

32 F �
11F �

22 C F �
21F �

12 F �
11F �

32 C F �
31F �

12 F �
21F �

32 C F �
31F �

22

2F �
11F �

13 2F �
21F �

23 2F �
31F �

33 F �
11F �

23 C F �
21F �

13 F �
11F �

33 C F �
31F �

13 F �
21F �

33 C F �
31F �

23

2F �
12F �

13 2F �
22F �

23 2F �
32F �

33 F �
12F �

23 C F �
22F �

13 F �
12F �

33 C F �
32F �

13 F �
22F �

33 C F �
32F �

23

3

7

7

7

7

7

7

7

5

(C2)

and OF% is defined similarly, withF% replacingF � throughout.
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