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Appendix F. Approach to Hydrologic 
Uncertainty  

F.1 Introduction & Purpose 

Future hydrology, the primary driver of how each alternative performs, is deeply uncertain over the 
medium-to-long-term (Smith et al., 2022). Therefore, alternatives in the Draft Environmental 
Impact Statement (DEIS) are evaluated according to their ability to maintain resource-specific 
performance goals across a broad range of streamflow conditions (i.e., robustness analysis) and the 
streamflow conditions in which each alternative is likely to fail those goals (i.e., vulnerability analysis) 
(McPhail et al., 2018; Bonham et al., 2024; Bonham, Kasprzyk and Zagona, 2025). This approach, a 
type of Decision Making Under Deep Uncertainty (DMDU; see Appendix D, ‘DMDU Overview 
and Approach’) (Marchau et al., 2019), requires a systematically selected set of streamflow traces to 
use as inputs to the resource modeling.  

The modeling in the DEIS uses 400 streamflow traces selected from a combination of five 
streamflow ensembles and a statistical subsampling approach. All traces from the Stress Test, 
Coupled Model Intercomparison Project (CMIP) Phase 5 – Localized Constructed Analogs 
(CMIP5-LOCA), and Drying with Variability ensembles are included (200 traces), and 200 more 
traces were subsampled from the Paleo Drought Resampled and CMIP3 Paleo-Conditioned 
ensembles using the Kennard Stone algorithm (totaling 400 traces). 

The purpose of this appendix is to describe the five streamflow ensembles (Section F.2), explain the 
subsampling approach (Section F.3), and discuss the resulting set of 400 traces (Section F.4). 
Section F.5 provides a summary of previous sections. 

F.2 Streamflow Ensembles 

F.2.1 Stress Test  
The Stress Test ensemble provides continuity with many recent studies (e.g., 2019 Drought 
Contingency Plan) and routine long-term projections. The ensemble was created by resampling the 
1988-20231 subset of the historical natural flow record using the index sequential method (Ouarda, 
Labadie and Fontane, 1997) and focusing on recent hydrology. This recent period has a 11% drier 
average flow than the full historical record (1906-2023). Use of the Stress Test ensemble is 
supported by multiple research studies that identified a shifting temperature trend in the Colorado 
River Basin in the late 1980s that affected runoff efficiency and resulted in lower average flows for 

 
1 2021-2023 natural flow data are estimates based on the April 2024 24-Month Study 
(https://www.usbr.gov/lc/region/g4000/NaturalFlow/LFnatFlow1906-2024.2024.4.22.xlsx) 

https://www.usbr.gov/lc/region/g4000/NaturalFlow/LFnatFlow1906-2024.2024.4.22.xlsx
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the same amount of precipitation (Woodhouse et al., 2016; McCabe et al., 2017; Udall and 
Overpeck, 2017). 

F.2.2 CMIP5-LOCA 
The CMIP5-LOCA ensemble uses the best available projections from global climate models that are 
available at the scale necessary for input to CRSS. The ensemble uses Upper Basin flows from a 
project completed by Reclamation’s Technical Services Center for the Upper and Lower Colorado 
Regions that relies on data from Vano et al. (2020) (Reclamation, 2025). These flows were created by 
running LOCA downscaled climate projections of temperature and precipitation through the 
Variable Infiltration Capacity (VIC) hydrological model. No secondary streamflow bias correction 
was applied to the VIC flows.  The ensemble includes 64 traces: 32 traces derived from climate 
projections for representative concentration pathway (RCP) 4.5 and 32 traces from RCP 8.5. Natural 
flows for Lower Basin sites were determined by applying the k-Nearest Neighbors (kNN; Prairie et 
al., 2008; Nowak et al., 2010) approach, which selects flows from the historical year whose Lees 
Ferry flows most closely match those of the projected year. 

F.2.3 “Drying with Variability”  
The “Drying with Variability” ensemble was developed in collaboration with Utah State University. 
Through a multiyear project that began in 2021, researchers performed in-depth analysis on the 
ensembles that were available for Reclamation’s long-term modeling to identify any gaps in statistical 
characteristics that could (a) be important for testing the system, and (b) capture aspects of the best 
available information from different sources (Salehabadi et al., 2022). Analysis showed that none of 
the available ensembles included a long-term drying trend while maintaining or increasing variability 
in flow magnitudes.  

As part of the project, an ensemble was developed that met these criteria using a statistical approach 
to combine information from multiple established data sources (Salehabadi et al., 2025). Specifically, 
the ensemble combines the following information: 

• Observed Lees Ferry annual flows from 1931 to 2020 with wet and dry sequencing from the 
paleo-reconstructed record; 

• An extrapolation of the observed temperature trend with an estimate of how runoff 
efficiency2 is affected by warmer temperatures; 

• Projections from multiple generations of global climate models that indicate that 
precipitation variability could increase in the future.  

Through nonparametric resampling of observed flows and paleo-reconstructed sequencing, 
application of the long-term declining trend, and a new method for transforming the flow variability 
while preserving the trend, an ensemble was generated that filled the statistical and narrative gap.  

 
2 Runoff efficiency is a measure of the amount of streamflow produced for a given amount of precipitation. Runoff 
efficiency has been shown to decline as temperatures increase due to increased evaporation, drying of soils, and 
increased evapotranspiration from plants. 



F. Approach to Hydrologic Uncertainty (Subsampling Approach) 
 

 
January 2026 Post-2026 Colorado River Reservoir Operations DEIS F-3 

To prepare this ensemble for use in CRSS, annual Lees Ferry flows are disaggregated to all 29 
natural flow locations using the kNN method (Prairie et al., 2008; Nowak et al., 2010). 

The Drying-with-Variability is used as the ‘reference hydrology’ included with every vulnerability 
analysis in Volume III. The reason this ensemble was chosen as the reference hydrology is because 
it helps the reader interpret the likelihood of undesirable outcomes (e.g., Lake Mead dead pool-
related reductions) if the current downward trend continues and/or the frequency and duration of 
droughts become more severe. Given the significant decline in reservoir storage that has occurred 
from 2000-2025, long-term planning in the Basin must wrestle with the potential for such a future.  

F.2.4 Paleo Drought Resampled (subsampled) 
The Paleo Drought Resampled ensemble is a severe drought scenario developed by Salehabadi et al. 
(2022). The ensemble randomly resamples Lees Ferry flows from the 16th century drought (1576-
1600) from Meko et al. (2017) paleo reconstruction to create 100 traces that include unique 
sequences of flows from this period. The ensemble was subsampled to select 50 traces that fill in 
patterns missing from the three complete ensembles, as described in the next section. Annual Lees 
Ferry flows are disaggregated to all 29 natural flow locations using the kNN method (Prairie et al., 
2008; Nowak et al., 2010). 

F.2.5 CMIP3 Paleo-Conditioned (subsampled) 
The CMIP3 Paleo-Conditioned ensemble is developed using two valuable data sources and aligns 
with a recommendation from Colorado River Basin Climate and Hydrology State of the Science 
Report (Lukas and Payton, 2020). The ensemble was created using the non-parametric conditioning 
(NPC) method (Prairie et al., 2008) with the Meko et al. (2017) paleo record to define wet-dry 
sequencing and sampled magnitudes from annual CMIP3 flows. This NPC sampling method was 
performed on each of the 112 CMIP3 streamflow projections (2024-2060) to create 50 traces for 
each projection, resulting in 5,600 traces for all 29 natural flow sites. The ensemble was subsampled 
to select 150 traces that fill gaps in patterns and characteristics, as described in the next section. 

F.3 Subsampling Approach 

The subsampling was performed using a 3-step procedure and the Kennard Stone algorithm 
(Kennard and Stone, 1969), which, in this application, selects streamflow traces from the Paleo 
Drought Resampled and CMIP3 Paleo-Conditioned ensembles with statistics not well-represented 
by traces in the Stress Test, CMIP5-LOCA, or Drying with Variability ensembles.  

This section is organized as follows. Section F.3.1 describes the Kennard Stone algorithm. Section 
F.3.2 explains the streamflow statistics used as inputs to Kennard Stone. Section F.3.3 describes 
the 3-step sampling procedure. 

F.3.1 Subsampling algorithm: Kennard Stone 
Given an existing sample of n data points, the Kennard Stone algorithm selects k additional points 
(for a total of n + k points) from population P such that the k points are maximally different from 
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the original n and from each other3. The algorithm uses an iterative approach; it first identifies k1 
(the first data point to be selected) as the point that maximizes the distance from all n points, where 
distance is calculated using statistics associated with each point and a selected distance metric. Then, 
k2 is selected to maximize the distance from all n points and k1.This process continues until all k 
points have been selected (Kennard and Stone, 1969; Stevens and Ramirez-Lopez, 2020).   

In this application, each streamflow trace is a data point. The existing sample of n data points are the 
traces in the Stress Test, CMIP5-LOCA, and Drying with Variability ensembles (n = 36 traces [Stress 
Test] + 64 traces [CMIP5-LOCA] + 100 traces [Drying with Variability] = 200 traces). k = 200 so 
the total number of traces is 400. Mahalanobis distance (Mahalanobis, 1936; Brereton, 2015) was 
chosen for the distance metric to account for correlation between streamflow statistics, which are 
described in the next section. 

F.3.2 Streamflow statistics 
The streamflow statistics (Table F-1) are calculated using 2027-2056 calendar year volumes of 
natural flow at Lees Ferry, Arizona. The statistics describe dry, wet, and normal flow conditions over 
various durations (1-, 2-, 5-, 10-, and 20-year windows) to ensure the set of 400 traces cover a broad 
range of hydrologic conditions. The statistics are calculated for each trace of every ensemble, which 
are then used in the 3-step application of Kennard Stone described in Section F.3.3.  

Table F-1 
Streamflow statistics used with the Kennard Stone sampling algorithm 

Streamflow Statistic Category 
Minimum 1-year natural flow volume 

Dry conditions Average Lees Ferry natural flow during the driest 5-year period 
Average Lees Ferry natural flow during the driest 10-year period 
Average Lees Ferry natural flow during the driest 20-year period 
Maximum 1-year natural flow volume 

Wet conditions Average Lees Ferry natural flow during the wettest 5-year period 
Average Lees Ferry natural flow during the wettest 10-year period 
Average Lees Ferry natural flow during the wettest 20-year period 
Median of the rolling 2-year rolling average natural flow 

Normal conditions Median of the rolling 5-year rolling average natural flow 
Median of the rolling 10-year rolling average natural flow 
Median of the rolling 20-year rolling average natural flow 
2027-2056 Average Lees Ferry natural flow Long-term average 

 

F.3.3 3-Step Sampling Approach 
The following 3 steps were used to subsample a total of 200 traces from the Paleo Drought 
Resampled and CMIP3 Paleo-Conditioned ensembles. 

 
3 If n = 0 (i.e., zero data points have been selected to start with), then k1 and k2 are selected such that they maximize the 
pairwise distance between any two points in the population. 
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1. Sample 50 traces from the Paleo Drought Resampled ensemble using Kennard Stone. The 
50 traces capture the variability present in this ensemble while saving computing time 
compared to keeping all 100 traces. This brings the total number of traces to 250. 

2. Remove very wet traces from CMIP3 Paleo-Conditioned ensemble using filter criteria. This 
dataset contains a limited number of very wet traces because annual flows originate from the 
CMIP3 hydrology dataset. The goal was to systematically identify and remove these traces to 
avoid ‘shifting’ the distribution of the final 400 traces wetter due to dubious high flows. To 
do so, the CMIP3 Paleo-Conditioned traces were compared to the maximum values for 
select statistics from the combined Stress Test, Paleo Drought Resampled, and Drying with 
Variability ensembles. If a given trace was wetter according to any of the selected statistics, 
then it was removed before step 3. The criteria can be expressed mathematically as: 

• maximum annual flow < 26.45 MAF & maximum 2-Year average flow < 26.11 
MAF/year & maximum 5-year average flow < 24.61 MAF/year & 2027-2056 average 
flow < 16.47 MAF/year 

996 traces were removed because they failed one or more of the criteria, leaving 4,604 in 
traces in the CMIP3 Paleo-Conditioned ensemble before moving to step 3. 

3. Sample 150 traces from the pre-filtered CMIP3 Paleo-Conditioned ensemble. This brings the 
total number of traces to 400. 

F.4 Results 

Figure F-1 shows the distribution of trace average natural flow, grouped by ensemble (x-axis) and 
by time period (panels). All 400 traces are included in the boxplot labeled ‘Combined,’ while the 
remaining boxplots show traces grouped by ensemble. The time period averages are shown because 
the correspond to the periods used in the robustness analyses found in Volume I – Chapter 3 and 
Volume III. For comparison, the dashed lines labelled 14.6, 13.0, and 12.4 show the historical 
average natural flow in MAF from 1906-2024 (full historical record), 1988-2024 (Stress Test period), 
and 2000-2024 (Millenium Drought), respectively. 

The combined set of 400 traces covers the full range of average natural flow present in any 
individual ensemble while providing a nearly continuous sampling from wet to dry extremes. This is 
important because this DEIS evaluates critical performance goals that can fail under dry conditions 
(e.g. dead pool related delivery reductions) and wet conditions (e.g. use of the Glen Canyon Dam 
spillway). Across the Full Modeling Period (2027-2060), average natural flow ranges from about 8 to 
20 MAF. Comparing the Combined boxplot to historical averages, about 50% of the traces are drier 
than the 1988-2024 average, over 25% of the traces are drier than the 2000-2024 average, and about 
10% of the traces have an average below 11 MAF/year. In the subperiods (2027-2039, 2040-2049, 
and 2050-2060), the 25th, 50th and 75th percentiles are similar to the Full Modeling Period while the 
tails of the distribution are larger in both the wet and dry direction. This is due to the averages being 
calculated over 10 to 13 years in the subperiods compared to the 34 years in the Full Modeling 
Period, which dampens the effect of extremely wet and dry years on the reported averages. 
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Figure F-2 shows the distribution of the driest 1-, 2-, 5-, 10-, and 20-year average volumes in each 
trace, grouped by ensemble. The dashed line shows the minimum volumes for each period observed 
during the historical  period (1906-2024). In the Combined ensemble, about 25% of traces have a 
driest 1-year volume less than the historical minimum. For the 2- to 20-year trace averages, 50% or 
more of traces in the Combined ensemble are drier than the historical minimum. 

Figure F-3 shows the distribution of the wettest 1-, 2-, 5-, 10-, and 20-year average volumes in each 
trace, grouped by ensemble. The dashed line shows the maximum volumes for each period observed 
during the historical period (1906-2024). Across 1-to 20-year trace averages, nearly 75% to over 90% 
of traces in the Combined ensemble have values less than the historical maximums.  

Considering the wettest 1-year volumes, most traces above the 90th percentile in the Combined 
ensemble are from the CMIP5-LOCA ensemble. This is also true for the 2- to 20-year volumes, but 
with some of the very wet traces originating from the Drying with Variability and CMIP3 Paleo-
Conditioned ensembles. 

The distribution of average natural flow for the Drying with Variability ensemble, which is used as 
the reference hydrology in the vulnerability analysis figures in Volume III, demonstrates a storyline 
of declining streamflow over time. Over the full modeling horizon, the median average natural flow 
is 12.9 MAF/year (slightly less than the median of the combined ensemble, 13.0 MAF/year). In each 
subsequent subperiod, however, the median average natural flow decreases from 13.4 to 12.7 to 12.1 
MAF/year.  
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Figure F-1 
Distribution of average water year natural flow at Lees Ferry, grouped by ensemble 

(x-axis) and by time period (panels). 

 
Note: The dashed lines labelled 14.6, 13.0, and 12.4 indicate the historical average natural flow in million acre-feet 
from 1906-2024 (full historical record), 1988-2024 (Stress Test period), and 2000-2024 (Millenium Drought), 
respectively.
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Figure F-2 
Distribution of the driest 1-, 2-, 5-, 10- and 20-Water Year Volumes (columns) in each trace, grouped by ensemble. 

 
Note: Dashed lines show the minimum volumes for each period observed during the historical period (1906-2024). 
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Figure F-3 
Distribution of the wettest 1-, 2-, 5-, 10- and 20-Water Year Volumes (columns) in each trace, grouped by ensemble.  

 
Note: Dashed lines show the maximum volumes for each period observed during the historical period (1906-2024). 
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F.5 Summary 

Due to the deeply uncertain nature of future hydrology in the Colorado River Basin, DMDU is the 
analytical framework used in this DEIS. To reliably evaluate the robustness and vulnerability of the 
alternatives, it is essential to model them with a systematically selected set of streamflow traces. This 
DEIS uses 400 total traces from the following ensembles: 

• Stress Test (36 traces) 
• CMIP5-LOCA (64 traces) 
• Drying with Variability (100 traces) 
• Paleo Drought Resampled (subsampled, 50 traces) 
• CMIP3 Paleo-Conditioned (subsampled, 150 traces) 

All traces from Stress Test, CMIP5-LOCA, and Drying with Variability ensembles were used 
because they provide continuity with previous analyses and useful storylines about how future 
streamflow could decline. Combined, these ensembles span a wide range of plausible streamflow 
conditions but leave gaps in the types of conditions being evaluated. To fill in the gaps, a subsample 
of traces was selected from the Paleo Drought Resampled and CMIP3 Paleo-Conditioned ensembles 
using the Kennard Stone algorithm. The result is a combined set of 400 traces that cover a broad 
range of plausible conditions with minimal gaps in the types of conditions being tested. 
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